www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit von Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Stetigkeit von Fkt.
Stetigkeit von Fkt. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit von Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 11.01.2006
Autor: Reaper

Aufgabe
Zeigen Sie :
[mm] \limes_{n\rightarrow0}(sinx/x) [/mm] = 1




So jetzt haben wir in der UE eine andere uns bekannte Form von sinx eingesetzt, nämlich:

[mm] \summe_{k=0}^{ \infty} x^{2k+1}/(2k+1)! [/mm] /x = [mm] \summe_{k=1}^{ \infty} x^{2k}/(2k+1)! [/mm] + 1 ....bis daher is noch klar....aber dann....

0 <= |  [mm] \summe_{k=1}^{ \infty} x^{2k}/(2k+1)! [/mm] | <  [mm] \summe_{k=1}^{ \infty} |x^{2k}| [/mm] = [mm] x^{2} [/mm] *  [mm] \summe_{k=2}^{ \infty} |x^{2k}| [/mm] = (geometrische Reihe) [mm] \limes_{x\rightarrow0} x^{2} [/mm] * [mm] 1/(1-x^2) [/mm] = 0

Haben wir dann etwa den Einschachtelungssatz verwendet? Wir haben das Ganze (Restglied) auf jeden Fall nach oben so abgschätzt dass wir auf eine geometrische Reihe kommen und daraus den Grenzwert berechnen. Die Rechenschritte sind klar. Nur wieso wird die Funktion in Betrag geschrieben? Und am Schluss kommen wir drauf dass die Funktion gegen 0 geht da wir sie durch beide Seiten eingeschachtelt haben oder..und dann is klar dass 1 + Restglied(=0) = 1 ist und somit die Aussage richtig war..darf man da überhaupt den Einschachtelungssatz nehmen bei Funktionen?

mfg,
Hannes

        
Bezug
Stetigkeit von Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mi 11.01.2006
Autor: Stefan

Hallo Reaper!

Ihr habt einfach mittels einer einfachen Abschätzung gezeigt:

[mm] $\left| \frac{\sin(x)}{x} - 1 \right| \to [/mm] 0 [mm] \qquad [/mm] (x [mm] \to [/mm] 0)$,

und das ist genau dann der Fall, wenn

[mm] $\lim\limits_{x \to 0} \frac{\sin(x)}{x} [/mm] =1$

gilt.

Das siehst du ja sofort, wenn du dir einfach mal die Definition der Konvergenz vergegenwärtigst. Dort muss man ja im zweiten Fall auch

[mm] $\left| \frac{\sin(x)}{x} - 1 \right|$ [/mm]

betrachten.

Liebe Grüße
Stefan

Bezug
        
Bezug
Stetigkeit von Fkt.: Tippfehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mi 11.01.2006
Autor: Loddar

Hallo Reaper!


Meines Erachtens hat hier mal wieder das Tippfehler-Teufelchen zugeschlagen ;-) ...


Der vorletzte Term muss heißen: $... \ = \ [mm] x^2*\summe_{k=\red{0}}^{\infty}\left|x^{2k}\right| [/mm] \ = \ ...$


Gruß
Loddar


Bezug
        
Bezug
Stetigkeit von Fkt.: l'Hospital
Status: (Antwort) fertig Status 
Datum: 22:07 Mi 11.01.2006
Autor: mathmetzsch

Hallo,

also du kannst alternativ auch der Einfachheit halber die Regeln von de l'Hospital verwenden. Du hast mit

[mm] \limes_{x\rightarrow 0}\bruch{sin(x)}{x} [/mm]

einen Ausdruck der Form [mm] \bruch{0}{0}. [/mm] Es gilt also

[mm] \limes_{x\rightarrow 0}\bruch{sin(x)}{x} [/mm]
[mm] =\limes_{x\rightarrow 0}\bruch{(sin(x))'}{(x)'} [/mm]
[mm] =\limes_{x\rightarrow 0}\bruch{cos(x)}{1} [/mm]
=1

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]