www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit von Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Stetigkeit von Funktionen
Stetigkeit von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit von Funktionen: Lösung
Status: (Frage) beantwortet Status 
Datum: 20:50 Mi 12.12.2007
Autor: alpakas

Aufgabe
a) Für die Funktion f: [mm] \IR\to\IR [/mm] gelte f(0)=1 sowie f(x+y)=f(x)f(y)  für alle [mm] x,y\in\IR [/mm]

man zeige: Ist f im Nullpunkt stetig, so ist f auf ganz [mm] \IR [/mm]  stetig.

b) Für die Funktion g: [mm] \IR\to\IR [/mm]   gelte |g(x)| [mm] \le [/mm] M  für alle x [mm] \in\IR [/mm]  
Zeigen sie: Die Funktion f: [mm] \IR\to\IR [/mm]    , f(x):=xg(x) ist in 0 stetig.  

Ihr müsst mir unbedingt helfen, ich komme da einfach nicht ran!!!! Bitte!!! Bin echt schon am verzweifeln!!

lg alpakas

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Stetigkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 12.12.2007
Autor: Somebody


> a) Für die Funktion f: [mm]\IR\to\IR[/mm] gelte f(0)=1 sowie
> f(x+y)=f(x)f(y)  für alle [mm]x,y\in\IR[/mm]
>
> man zeige: Ist f im Nullpunkt stetig, so ist f auf ganz [mm]\IR[/mm]
>  stetig.
>
> b) Für die Funktion g: [mm]\IR\to\IR[/mm]   gelte |g(x)| [mm]\le[/mm] M  für
> alle x [mm]\in\IR[/mm]  
> Zeigen sie: Die Funktion f: [mm]\IR\to\IR[/mm]    , f(x):=xg(x) ist
> in 0 stetig.
> Ihr müsst mir unbedingt helfen, ich komme da einfach nicht
> ran!!!! Bitte!!! Bin echt schon am verzweifeln!!

Zu a): Betrachte folgende Umformungskette

[mm]|f(x)-f(x_0)|=|f\big((x-x_0)+x_0\big)-f(x_0)|=|f(x-x_0)\cdot f(x_0)-f(x_0)|=|f(x-x_0)-1|\cdot |f(x_0)|[/mm]

Ist nun, nach Voraussetzung, $f$ an der Stelle $0$ stetig und $f(0)=1$, so geht der Faktor [mm] $|f(x-x_0)-1|$ [/mm] für [mm] $x\rightarrow x_0$ [/mm] gegen $0$. Da der zweite Faktor [mm] $|f(x_0)|$ [/mm] für den Nachweis der Stetigkeit von $f$ an der Stelle [mm] $x_0$ [/mm] konstant ist, geht also die Differenz [mm] $|f(x)-f(x_0)|$ [/mm] für [mm] $x\rightarrow x_0$ [/mm] gegen $0$: d.h. $f$ ist stetig in [mm] $x_0$. [/mm]
Dies kannst Du natürlich alles auch mit [mm] $\varepsilon,\delta$ [/mm] formulieren, wenn Du dies unbedingt nötig finden solltest.

Zu b): Es ist doch
[mm]|f(x)-f(0)|=|x\cdot g(x)-0|=|x|\cdot|g(x)|\leq |x|\cdot M[/mm]

Die rechte Seite dieser Ungleichung geht für [mm] $x\rightarrow [/mm] 0$ offenbar gegen $0$. Also?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]