www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStetigkeitsüberprüfung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Stetigkeitsüberprüfung
Stetigkeitsüberprüfung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeitsüberprüfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 05.10.2008
Autor: f4b

Aufgabe
Untersuche die Funktion an den jeweils kritischen Stellen auf Stetigkeit:

a) f(x) = sin(x)/cos(x) im Intervall[0;4]    
b) [mm] f(x)=\begin{cases} 1/x, & \mbox{für } \mbox{ x ungleich 0} \\ 0, & \mbox{für } \mbox{ x=0} \end{cases} [/mm]

Hallo zusammen,

ich weiß zwar was Stetigkeit bedeutet, aber ich weiß nicht, wie ich die Aufgaben angehen könnte.
Bei a) weiß ich, dass x im Bogenmaß angegeben ist

Aber mir fehlt der entscheidene erste Schritt zum Ergebnis

        
Bezug
Stetigkeitsüberprüfung: mit dem Grenzwert
Status: (Antwort) fertig Status 
Datum: 17:41 So 05.10.2008
Autor: Disap

Hallo,

> Untersuche die Funktion an den jeweils kritischen Stellen
> auf Stetigkeit:
>  
> a) f(x) = sin(x)/cos(x) im Intervall[0;4]    
> b) [mm]f(x)=\begin{cases} 1/x, & \mbox{für } \mbox{ x ungleich 0} \\ 0, & \mbox{für } \mbox{ x=0} \end{cases}[/mm]
>  
> Hallo zusammen,
>  
> ich weiß zwar was Stetigkeit bedeutet, aber ich weiß nicht,
> wie ich die Aufgaben angehen könnte.
>  Bei a) weiß ich, dass x im Bogenmaß angegeben ist
>  
> Aber mir fehlt der entscheidene erste Schritt zum Ergebnis

Das kommt ganz darauf an, was ihr zur Stetigkeit festgelegt habt.
Am einfachsten geht das durch Untersuchung mit dem Limes, z. B. bei der b)

[mm] $lim_{x \to 0+} \frac{1}{x} [/mm] = [mm] +\infty$ [/mm] (von rechts)
[mm] $lim_{x \to 0-0} \frac{1}{x} [/mm] = [mm] -\infty$ [/mm] (von links)

Dies ist ungleich 0, was ja eigentlich herauskommen sollte, dementsprechend ist f(x) in x=0 nicht stetig.

Bei a) musst du bei den kritischen Stellen (die Nullstellen des Cosinus) gucken, was herauskommt, nach dem selben Prinzip.
Frage an dich: Ist die Tangens=Sinus/Cosinus Funktion stetig oder nicht?

Mfg
Disap

Bezug
                
Bezug
Stetigkeitsüberprüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 So 05.10.2008
Autor: f4b

Müsste demnach ja unstetig sein in [mm] \pi/2 [/mm]

Bezug
                        
Bezug
Stetigkeitsüberprüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 So 05.10.2008
Autor: Disap


> Müsste demnach ja unstetig sein in [mm]\pi/2[/mm]  

So ist es auch.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]