www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Stichprobenmittelwert Wahrsch.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Stichprobenmittelwert Wahrsch.
Stichprobenmittelwert Wahrsch. < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichprobenmittelwert Wahrsch.: Wahrsch. Stichprobenmittelwert
Status: (Frage) beantwortet Status 
Datum: 18:12 Fr 13.06.2008
Autor: Copol

Aufgabe
Eine Stichprobe vom Umfang n=5 aus einer normalverteilten Grundgesamtheit liefert die folgenden Werte: x1=6 x2=9 x3=7 x4=5 x5=8
Das AriMi der Grundgesamtheit ist [mm] \mu [/mm] = 6

a) Ermitteln sie den Stichprobenmittelwert. Welcher Verteilung folgt dieser und nenne 5 Eigenschaften dieser Verteilung.
b) Wie groß ist die Wahrscheinlichkeit, dass der Stichprobenmittelwert höchstens den Wert 8 animmt?


Hi!

Den Stichprobenmittelwert hab ich soweit Bereichnet: x= 1/5 (5+6+7+8+9) = 7
Was ist jedoch mit "Welcher Verteilung folgt dieser und nenne 5 Eigenschaften dieser Verteilung."? Versteh nicht was die von mir wollen.

b) Komm ich garnicht weiter.
Standartabweichung [mm] \delta [/mm] sei 1,73 (hab ich Ausgerechnet)
Habe erst angefangen den Standartfehler zu berechnen ( [mm] \delta [/mm] n= [mm] \delta [/mm] / wurzel n = 1,73/wurzel 5 = 0,77

Daraus hätte sich ja dann ergeben -> [mm] \mu [/mm] +- [mm] 3\delta [/mm] n = 6+-2,31 = ca. 99%
Jedoch brauch ich ja die Wahrscheinlichkeit des Stichprobenmittelswertes von HÖCHSTENS 8.

Also Habe ich nun so gerechnet: Z= x1 - [mm] \mu [/mm] / [mm] \delta [/mm] = 8-6/1,73 = 1,15
In der Tabelle nachgeschaut ergibt 1,15 ca. 87% Wahrscheinlichkeit das der Stichprobenmittelwert höchstens 8 wird.

nun ergibt ja [mm] \mu [/mm] +- 2 [mm] \delta [/mm] n = 6 +- 1,56 = ca. 95% Wahrscheinlichkeit.

DAS PASST DOCH VORNE UND HINTEN NICHT!

bitte um Hilfe!

MfG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stichprobenmittelwert Wahrsch.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 16.06.2008
Autor: luis52

Moin Copol,

[willkommenmr]


> Eine Stichprobe vom Umfang n=5 aus einer normalverteilten
> Grundgesamtheit liefert die folgenden Werte: x1=6 x2=9 x3=7
> x4=5 x5=8
>  Das AriMi der Grundgesamtheit ist [mm]\mu[/mm] = 6

>

> a) Ermitteln sie den Stichprobenmittelwert. Welcher
> Verteilung folgt dieser und nenne 5 Eigenschaften dieser
> Verteilung.

[mm] $\bar [/mm] X$ ist normalverteilt mit [mm] $\operatorname{E}[\bar X]=\mu$ [/mm] und [mm] $\operatorname{Var}[\bar [/mm] X]= [mm] \sigma^2/n$. [/mm]

>  b) Wie groß ist die Wahrscheinlichkeit, dass der
> Stichprobenmittelwert höchstens den Wert 8 animmt?

Das kann man nicht ausrechnen, wenn [mm] $\sigma^2$ [/mm] unbekannt ist.

vg Luis
                      

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]