www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikStirlingzahlen berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Stirlingzahlen berechnen
Stirlingzahlen berechnen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stirlingzahlen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Di 10.02.2015
Autor: Mopsi

Hallihallo :)

Wie berechne ich die Stirlingzahlen? Diese Frage stelle ich mir, und habe in dem Wikipediaartikel für die Stirlingzahlen neben diesen für mich unverständlichen Formeln auch eine Art pascalsches Dreieck für die Stirlingzahlen erster und zweiter Art gefunden. Nur leider gibt es da keine Erklärung, wie man auf die Werte kommt. 
Kann mir bitte jemand erklären wie man diese Dreiecke bildet und wie man die Stirlingzahlen abliest?

​http://de.m.wikipedia.org/wiki/Stirling-Zahl
 

        
Bezug
Stirlingzahlen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Di 10.02.2015
Autor: abakus


> Hallihallo :)

>

> Wie berechne ich die Stirlingzahlen? Diese Frage stelle ich
> mir, und habe in dem Wikipediaartikel für die
> Stirlingzahlen neben diesen für mich unverständlichen
> Formeln auch eine Art pascalsches Dreieck für die
> Stirlingzahlen erster und zweiter Art gefunden. Nur leider
> gibt es da keine Erklärung, wie man auf die Werte
> kommt. 

Das stimmt nicht. Nach
"Die Karamata-Notation betont die Analogie:" ist die Vorschrift angegeben.


> Kann mir bitte jemand erklären wie man diese Dreiecke
> bildet und wie man die Stirlingzahlen abliest?

>

> ​http://de.m.wikipedia.org/wiki/Stirling-Zahl
>  

Bezug
        
Bezug
Stirlingzahlen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Di 10.02.2015
Autor: Gonozal_IX

Hiho,

> Hallihallo :)
>  
> Wie berechne ich die Stirlingzahlen? Diese Frage stelle ich
> mir, und habe in dem Wikipediaartikel für die
> Stirlingzahlen neben diesen für mich unverständlichen
> Formeln auch eine Art pascalsches Dreieck für die
> Stirlingzahlen erster und zweiter Art gefunden. Nur leider
> gibt es da keine Erklärung, wie man auf die Werte
> kommt. 

Doch, genau das steht in dem Artikel in diesen für dich "unverständlichen Formeln".

Für die Sterling-Zahlen erster Art, gilt die Rekursionsformel:

[mm] $s_{n+1,k} [/mm] = [mm] s_{n,k-1} [/mm] + [mm] ns_{n,k}$ [/mm]

Wie im Pascalschen Dreieck fängt man im Stirling-Dreieck die Reihen mit 0 an zu zählen und dann ergibt sich obige Formel in Reihe n in Worten zu:

"Nimm die Zahl links drüber und addiere dazu das n-fache der Zahl rechts drüber."

Wobei gilt: Gibt es keine Zahl "links drüber" oder "rechts drüber", ist 0 stattdessen zu verwenden.

Für die Stirling-Zahlen zweiter Art hat man die Formel:
[mm] $S_{n+1,k} [/mm] = [mm] S_{n,k-1} [/mm] + [mm] kS_{n,k}$ [/mm]

Und demzufolge bei gleichen Regeln den Satz an Stelle k:

"Nimm die Zahl links drüber und addiere dazu das k-fache der Zahl rechts drüber."

Gruß,
Gono

Bezug
                
Bezug
Stirlingzahlen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Di 10.02.2015
Autor: Mopsi

Super erklärt! Vielen Dank Gonozal :)

Bezug
                
Bezug
Stirlingzahlen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Di 10.02.2015
Autor: Mopsi

Nun habe ich doch noch eine Frage.

​Stimmt das ehrlich das man bei k=0 anfängt? Denn bei den Stirlingzahlen zweiter Art müssten dann doch alle Werte ganz links 0 sein. Sie sind aber 1, warum?

Bezug
                        
Bezug
Stirlingzahlen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:47 Mi 11.02.2015
Autor: Gonozal_IX

Hiho,

> ​Stimmt das ehrlich das man bei k=0 anfängt?

nein.
Aber auch das hätte man mit Lesen selbst rausfinden können, im Artikel steht ja:

Dreieck für Stirling-Zahlen (erste Zeile n=1, erste Spalte k=1)

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]