www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieStochastik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Stochastik
Stochastik < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:14 Mo 29.06.2015
Autor: Michi4590

Aufgabe
Ein Getränkeautomat ist defekt. Nur in der Hälfte der Fälle erhält man nach dem Münzeinwurf auch das Getränk. Andererseits gibt der Automat in [mm] \bruch{1}{4} [/mm] der Fälle die eingeworfenen Münzen wieder zurück, während er in [mm] \bruch{3}{8} [/mm] aller Fälle überhaupt nicht reagiert.

Geben Sie die Wahrscheinlichkeit dafür an, dass der Automat einwandfrei arbeitet.

Ich könnte jetzt definieren:

A = Der Automat funktioniert
B = Der Automat funktioniert nicht.

So, dann stellt sich mir aber die Frage, wie mache ich weiter? Brauche ich einen Binomialverteilung, LaPlace, oder ähnlihces?. Da bin ich momentan recht planlos.

Vielen Dank.

        
Bezug
Stochastik: Lösung
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 29.06.2015
Autor: Simor


> Ein Getränkeautomat ist defekt. Nur in der Hälfte der
> Fälle erhält man nach dem Münzeinwurf auch das Getränk.
> Andererseits gibt der Automat in [mm]\bruch{1}{4}[/mm] der Fälle
> die eingeworfenen Münzen wieder zurück, während er in
> [mm]\bruch{3}{8}[/mm] aller Fälle überhaupt nicht reagiert.
>
> Geben Sie die Wahrscheinlichkeit dafür an, dass der
> Automat einwandfrei arbeitet.
>  Ich könnte jetzt definieren:
>  
> A = Der Automat funktioniert
>  B = Der Automat funktioniert nicht.
>  
> So, dann stellt sich mir aber die Frage, wie mache ich
> weiter? Brauche ich einen Binomialverteilung, LaPlace, oder
> ähnlihces?. Da bin ich momentan recht planlos.

Gar nichts davon, ist vom Ding her total einfach:
In [mm]\bruch{3}{8}[/mm] der Fälle passiert nichts, in [mm]\bruch{2}{8}[/mm] wird die Münze zurück gegeben und in den übrigen  [mm]\bruch{3}{8}[/mm] funktioniert er halt. Musst nur de Aufgabe lesen und verstehen (und das ist ei der Formulierung tatsächlich nicht sofort der Fall, aber sonst hätte die Aufabe ja keinen Witz...).

Bezug
                
Bezug
Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mo 29.06.2015
Autor: Michi4590

So ein Mist, ich habe mich da viel zu sehr reingesteigert :-) Dankeschön für deine Antwort.

Für den Fall, dass jetzt noch die Frage kommen würde mit welcher Wahrscheinlichkeit das Getränk und die Münze ausgegeben werden würde, müsste ich die 3/8 und die 2/8 addieren?

Bezug
                        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mo 29.06.2015
Autor: chrisno

>...  Für den Fall, dass jetzt noch die Frage kommen würde mit
> welcher Wahrscheinlichkeit das Getränk und die Münze
> ausgegeben werden würde, müsste ich die 3/8 und die 2/8
> addieren?  

Wie kommst Du darauf. Du bekommst so die Wahrscheinlichkeit für den Fall
"Der Automat funktioniert richtig oder es gibt eine Münze zurück."
Du hast aber geschrieben: $Getränk und Münze werden ausgegeben".
Das ist ein Fall des nicht richtig Funktionierens mit Münzrückgabe. Da gibt es zwei Sorten:
Es gibt ein Getränk und eine Münze zurück oder es gibt kein Getränk und die Münze zurück.
Beide Fälle zusammen haben die Wahrscheinlichkeit 2/8.
Also muss für "Es gibt ein Getränk und eine Münze zurück" die Wahrscheinlichkeit kleiner sein.


Bezug
                                
Bezug
Stochastik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Di 30.06.2015
Autor: Michi4590

Vielen Dank für die Antwort :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]