www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikStochastik - Kniffel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Stochastik - Kniffel
Stochastik - Kniffel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik - Kniffel: Große Straße
Status: (Frage) beantwortet Status 
Datum: 19:23 Mi 30.03.2005
Autor: braun

Hallo

ich sitze gerade an meiner Matheaufgabe und kann einfach keinen Anfang finden, wie ich meine Aufgabe lösen kann!

Ich soll ausrechnen, wie hoch die Wahrscheinlichkeit ist, eine große Straße beim Kniffeln beim ersten Wurf zu erhalten. Sprich 1-2-3-4-5 oder 2-3-4-5-6. Ich habe mir gedacht, dass die Wahrscheinlichkeit bei 1/7776 liegt, da so hoch die Wahrscheinlichkeit ist, fünf gleiche zahlen zu Würfeln sprich 1-1-1-1-1. Irgendwie kommt mir das Ergebnis aber komisch vor!

Danke für Eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stochastik - Kniffel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 30.03.2005
Autor: moudi

Hallo braun

Es sind 5 Würfel (unterscheidbare), also gibt es für einen Wurf [mm] $6^5$ [/mm] Möglichkeiten.

Wieviele Möglichkeiten gibt es für eine grosse Strasse.

Entweder 1, 2, 3, 4, 5 oder 2, 3, 4, 5, 6.
Da wir mit unterscheidbaren Würfeln arbeiten, können beide der grossen Strassen auf unterschiedliche Arten erwürfelt werden.
z.B. rote, grüner, blauer, gelber, weisser Würfel.

rot 2, grün 5, blau 3, gelb 1, weiss 4 ergibt die  grosse Strasse 1 - 5, aber auch
rot 4, grün 5, blau 2, gelb 3, weiss 1 ergibt die  grosse Strasse 1 - 5.

Auf wieviele Arten kann die Strasse 1, 2, 3, 4, 5 erwürfelt werden?

Dann dieses Resultat mal zwei, und du hast alle Möglichkeiten für die grosse Strasse.

Der Rest ist wohl klar.

mfG Moudi

Bezug
                
Bezug
Stochastik - Kniffel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 30.03.2005
Autor: braun

Danke für die schnelle Hilfe!!!

Es gibt jeweils 120 Möglichkeiten also insgesammt 240 Möglichkeiten eine große Straße zu erwürfeln. Die Wahrscheinlichkeit beträgt dann 0.0308 oder 3,1% eine große Straße zu erwürfeln da 240/7776=0,0308

Danke nochmal!

gruß braun

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]