www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungStochastik - Urnenproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Stochastik - Urnenproblem
Stochastik - Urnenproblem < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik - Urnenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Di 12.05.2009
Autor: mathematicus100

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In einer Urne sind 7 weiße und 5 schwarze Kugeln. 2 Spieler A und B  ziehen abwechselnd und legen nicht zurück. Spieler A zieht zuerst. Das Spiel ist zu Ende, wer zuerst eine weiße Kugel zieht.
Frage: Wie groß ist die Wahrscheinlichkeit, dass Spieler A gewinnt.

Meine (falsche) Lösung:
weiße Kugel = w,   schwarze Kugel = s
A gewinnt, wenn die Ereigniss {w; sw; ssw; sssw; ssssw} eintreten.

Beim ersten Zug ist P(w) = 7/12
Beim zweiten Zug muss B  schwarz ziehen und A weiß:
P(sw) = 5/12 * 7/11

und so weiter.

Ich berechne also nach der 1. und 2. Pfadregel P(w) + P(sw) + P(ssw)+ P(sssw)+P(ssssw), also

7/12 + 5/12*7/11 + 5/12*4/11*7/10 + 5/12*4/11*3/10*7/9 + 5/12*4/11*3/10*2/9*7/8

Dieser Wert ist größer 1  - das kann nicht sein.

wo ist der Fehler?



        
Bezug
Stochastik - Urnenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 12.05.2009
Autor: barsch

Hi,

du hast einen kleinen "Denkfehler".

> weiße Kugel = w,   schwarze Kugel = s

okay

> A gewinnt, wenn die Ereigniss {w; sw; ssw; sssw; ssssw} eintreten.

Stimmt das denn wirklich?

Nach Voraussetzung zieht Spieler A zuerst. Danach wird abwechselnd gezogen, das heißt, als erstes zieht Spieler A, dann Spieler B, erneut Spieler A ... Stop, erkennst du etwas? Spieler A kann im zweiten Zug gar nicht gewinnen, weil er überhaupt nicht am Zug ist. Ebenso kann A nicht im 4. Zug gewinnen.
Spieler A kann nur gewinnen, wenn er am Zug ist. Und in welchen Zügen kann Spieler A dann nur gewinnen?

MfG barsch

Bezug
                
Bezug
Stochastik - Urnenproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Di 12.05.2009
Autor: mathematicus100

ja, ich hab's :-)

besser wär es gewesen A zieht weiß = aw,A zieht schwarz = as, b zieht weiß = bw, b zieht schwarz = bs

Also gewiinnt A , wenn die Ereignisse {aw; asbsaw; asbsasbsaw} eintreten

Wenn ich das ausrechne, komme ich auf 0,6982




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]