www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikStokessche Reibung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Stokessche Reibung
Stokessche Reibung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stokessche Reibung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 07.12.2010
Autor: FrageAcc

Aufgabe
Ein Körper falle in einer Flüssigkeit mit stokesscher Reibung nach unten. Untersuchen Sie seine eindimensionale Bewegung mit den Anfangsbedingungen [mm] v_{z}=v_{0} [/mm] zur Zeit t=0! Betrachten Sie die Grenzwerte für große Zeiten!




Mir ist nicht ganz klar wie ich bei dieser Aufgabe die Zeit mit hereinbringe bzw. wie ich eine Bewegungsgleichung herleiten soll...

Mein Ansatz: Es wirken zwei Kräfte auf den Körper:
[mm] F_{g}=m*g [/mm]
[mm] F_{s}=K*\gamma*v_{p} [/mm]
(Die Auftriebskraft sollen wir glaube ich außer acht lassen)

Dann gilt:
-m*a = [mm] K*\gamma*v_{p} [/mm] - m*g

Wenn die Grenzgeschwindigkeit erreicht wurde, dann ist m*a = 0 und [mm] v_{p} [/mm] const. mit [mm] v=-\bruch{m*g}{K*\gamma} [/mm]

Allerdings ist mir nicht ganz klar, wie ich nun die Bewegung in dieser Aufgabe untersuchen soll und was für Grenzwerte noch gemeint sein könnten...
Eine weitere Frage: Gilt hier die Beziehung a=v/t? ich habe ja lings eine Beschleunigung in Abhängigkeit der Geschwindigkeit rechts. Ist dieser Zusammenhang hier gültig? Wenn ja, warum? Wenn nein, warum?

        
Bezug
Stokessche Reibung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Di 07.12.2010
Autor: leduart

Hallo
du hast doch eine DGl für v, wenn du a=v' schreibst. lös die, und du hast v(t) und damit dann auch s(t)
Gruss leduart


Bezug
                
Bezug
Stokessche Reibung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 07.12.2010
Autor: FrageAcc

Ich hatte leider noch nie DGL. Allerdings glaube ich, dass ich weiß was du meinst.
Die obige Gleichung lässt sich umschreiben als

-m*s''(t) = [mm] K*\gamma*s'(t)-m*g [/mm]

Wie löse ich die Gleichung nun nach s(t) auf bzw. wie ist das Vorgehen?


Bezug
                        
Bezug
Stokessche Reibung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Di 07.12.2010
Autor: leduart

Hallo
v'=-a*v+b
zuerst v'=a*v lösen das sollte man wissen, dass nur die e-fkt mit einmen vielfachen ihrer Ableitung gleich ist
also [mm] v(t)=C*e^{-at} [/mm]  
ausserdem ist v`=0 ne Lösung dann v=b/a
also insgesamt [mm] v=b/a+C*e^{-at} [/mm]  C bestimmt man aus v(0)
Gruss leduart


Bezug
                                
Bezug
Stokessche Reibung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Di 07.12.2010
Autor: FrageAcc

Meine Frage ist bestimmt blöd... Aber warum sollte ein vielfaches der Ableitung gleich sein? v(t) könnte doch auch eine beliebige Funktion sein...
Und wieso ist der Ansatz c*e^(-at)? Warum "-" und warum nicht c*e^(-at)+b, warum steht das t im exponenten? Ich hoffe, dass sind nicht zu viele Fragen..

Bezug
                                        
Bezug
Stokessche Reibung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Di 07.12.2010
Autor: notinX

Hi,

> Meine Frage ist bestimmt blöd... Aber warum sollte ein
> vielfaches der Ableitung gleich sein?

probiers doch aus, die allgemeine e-Fkt. ist [mm] $f(t)=ae^{bt}$. [/mm] Die Ableitung unterscheidet sich nur durch einen Faktor.

> v(t) könnte doch
> auch eine beliebige Funktion sein...

im Prinzip ja, aber wenn wir wissen, dass v'=av gilt, dann lässt sich eine solche Gleichung auf jeden Fall durch die e-Fkt lösen.


>  Und wieso ist der Ansatz c*e^(-at)? Warum "-" und warum

Dieser Ansatz ist bei DGL's äußerst hilfreich und kommt oft vor. Warum? siehe oben.
das "-" kommt daher, da der Faktor vor der e-Fkt. negativ ist

> nicht c*e^(-at)+b, warum steht das t im exponenten? Ich
> hoffe, dass sind nicht zu viele Fragen..

Wo soll das t denn sonst stehen wenn nicht im Exponenten? Dann wärs ja keine e-Fkt. mehr. Die Fkt. [mm] f(t)=t\cdot e^{b} [/mm] ist keine e-Fkt. sondern eine Gerade

Hoffe, das hilft Dir weiter.

Gruß,

notinX

Bezug
                                        
Bezug
Stokessche Reibung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 08.12.2010
Autor: leduart

Hallo
Wenn man noch nie Differentialgleichungen hatte ist das nicht leicht.
die einfachst Differentialgleichung ist f'(x)=k
daraus sieht man sofort f(x)=k*t+b weil man eben weiß dass nur geraden konstante Steigung haben.
jetzt werden die Dgl aber schwieriger, wenn man einen Zusammenhang zw. funktion und ableitung hat.
wie die einfachst der Art f'(x)=f(x) es ist sofort  klar, dass das kein polynom sein kann, denn da hat ja f' einen niedrigeren Grad als x.
dan sucht man in dem Vorrat an funktionen, den man kennt, und hat Glück, wenn man an [mm] e^x [/mm] denkt denn für [mm] f(x)=e^x [/mm] gilt [mm] f'(x)=e^x [/mm]
das gilt aber auch für [mm] f(x)=c*e^x) f'=c*e^x [/mm]
und man hat eine lösung der gleichung f'=f
du fragst warum nicht [mm] f(x)=C*e^x+b [/mm]
einfach: weil die Ableitung dann [mm] c*e^x [/mm] ist also nicht gleich der funktion.
nächster Schritt: f'(x)=a*f(x)
da man schon mal an e-fkt gedacht hat, muss man die jetzt nur wenig ändern mit [mm] f(x)=c*e^{ax} [/mm] gilt [mm] f'(x)=a*c*e^{ax} [/mm] =f(x)
also haben wir eine (bzw da c beliebig ist, viele lösungen. allerdings nur noch eine, wenn wir sagen f(0)=7 daraus folgt [mm] f(0)=C*e^0=C [/mm] also C=7
Dass bei gegebenem anfangswert die lösung hier eindeutig ist hab ich jetz keine Lust zu beweisen. ist aber so.
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]