www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikStruktureller Induktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Logik" - Struktureller Induktionsbeweis
Struktureller Induktionsbeweis < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Struktureller Induktionsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mi 04.05.2016
Autor: newbie1234

Aufgabe
Zeigen Sie durch Induktion, dass 2^|t| eine obere Schranke für die größte Zahl ist, die durch einen variablenfreien Term t über N dargestellt werden kann (|t| bezeichnet die Länge von t).
Hinweis: Machen Sie den Induktionsanfang und die Induktionsannahme explizit.


Ich weiß wie ein Struktureller Induktionsbeweis prinzipell funktioniert. Nur hier kann ich keinen Induktionsanfang finden. Soweit ich es verstehe geht es hier um die länge desTerms also 2 würde bei unserer defintion als +(1,1) dargestellt das heißt der term is 6 zeichen lang also is |t| = 6 somit ist 6 < [mm] 2^6.. [/mm] was in dem fall zu einer wahren aussage führt... weiter weiß ich nicht...

        
Bezug
Struktureller Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Do 05.05.2016
Autor: hippias

[willkommenvh]

> Zeigen Sie durch Induktion, dass 2^|t| eine obere Schranke
> für die größte Zahl ist, die durch einen variablenfreien
> Term t über N dargestellt werden kann (|t| bezeichnet die
> Länge von t).
>  Hinweis: Machen Sie den Induktionsanfang und die
> Induktionsannahme explizit.
>  
> Ich weiß wie ein Struktureller Induktionsbeweis prinzipell
> funktioniert. Nur hier kann ich keinen Induktionsanfang
> finden.

Das verstehe ich nicht ganz, denn Deine nachfolgenden Überlegungen stellen doch einen Induktionsanfang dar. Worin besteht also wirklich das Problem?

> Soweit ich es verstehe geht es hier um die länge
> desTerms also 2 würde bei unserer defintion als +(1,1)
> dargestellt das heißt der term is 6 zeichen lang also is
> |t| = 6 somit ist 6 < [mm]2^6..[/mm] was in dem fall zu einer wahren
> aussage führt... weiter weiß ich nicht...

Achtung: es wird nicht [mm] $|t|<2^{|t|}$ [/mm] behauptet.

Mein Tip: Induktion nach der Länge $|t|$ des Terms $t$.

1. Induktionsanfang: Man muss zeigen, dass wenn $t$ ein (variablenfreier) Term der Länge $1$ ist - denn einen solchen gibt es - dass dann die dargestellte Zahl [mm] $<2^{1}= [/mm] 2$ ist.

Versuche dies!

2. Induktionsvoraussetzung: Sei $t$ ein variablenfreier Term der Länge $n:= |t|>1$. Man nehme an, dass die Behauptung für jeden variablefreien Term $s$ mit $|s|<n$ gültig ist: d.h. die durch $s$ dargestellte Zahl ist [mm] $<2^{|s|}$. [/mm]

3. Induktionsschritt: Zeige, dass auch die durch $t$ dargestellte Zahl $<2^ {n}$ ist.

Dazu überlege Dir, dass es Terme $s,r$ geben muss, sodass $t=+(s,r)$ gilt. Wende auf $s,r$ die Induktionsvoraussetzung an und begründe auch, weshalb dies überhaupt zulässig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]