www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieSubadditivität und Additivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Subadditivität und Additivität
Subadditivität und Additivität < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Subadditivität und Additivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Di 10.02.2009
Autor: oby

Aufgabe
Beweisen Sie folgende Eigenschaft für eine additive Mengenfunktion [mm] \lambda [/mm] : [mm] \mathcal{R} \mapsto \overline{\IR} [/mm] ( [mm] \mathcal{R} [/mm] Mengenring):
[mm] \lambda [/mm] (C) [mm] \ge [/mm] 0 für alle C aus [mm] \mathcal{R}. [/mm] Dann ist [mm] \lamda [/mm] genau dann volladditiv, wenn [mm] \lambda [/mm] subvolladditiv.

Hallo zusammen.
Also die Definitionen von volladditiv ist:
[mm] \lambda [/mm] ( [mm] \bigcup_{i=1}^{\infty} A_i) [/mm] = [mm] \summe_{i=1}^{\infty} \lambda (A_i) [/mm] für alle paarweise disjunkte [mm] A_i. [/mm]
Und die Definition von subvolladditiv ist:
[mm] \lambda [/mm] ( [mm] \bigcup_{i=1}^{\infty} A_i) \le \summe_{i=1}^{\infty} \lambda (A_i) [/mm] für alle (beliebige) [mm] A_i. [/mm]
Nun ist ja [mm] \lambda [/mm] bereits additiv. Die [mm] \Rightarrow [/mm] Richtung ist ja klar, denn ist [mm] \lambda [/mm] volladditiv, so lässt sich ja eine beliebige Folge [mm] A_i [/mm] mithilfe von [mm] B_1 [/mm] = [mm] A_1 [/mm] und [mm] B_i [/mm] = [mm] A_i \backslash B_{i-1} [/mm] zu einer Folge von disjunkten [mm] B_i [/mm] s "umformen". Nun nutzt man die Volladditivität aus und hat [mm] \lambda [/mm] ( [mm] \bigcup_{n=1}^{\infty} A_i [/mm] ) = [mm] \lambda [/mm] ( [mm] \bigcup_{n=1}^{\infty} B_i [/mm] ) = [mm] \summe_{i=1}^{\infty} \lambda (B_i) \le \summe_{i=1}^{\infty} \lambda (A_i) [/mm] da ja die [mm] A_i [/mm] jeweils Teilmengen der [mm] B_i [/mm] s sind.
Aber für die andere Richtung fällt mir kein Ansatz ein. Irgendwie muss es was damit zutun haben, dass alle [mm] \lambda [/mm] (C) [mm] \re [/mm] 0 sind, denn sonst wäre ja volladditiv äquivalent mit subvolladditiv.
Ich hoffe ihr könnt mir da weiterhelfen. Ich bin für jeden Tipp dankbar!
MfG Oby
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Subadditivität und Additivität: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Di 10.02.2009
Autor: Gonozal_IX

Hallo oby,

seien [mm] A_1,A_2,.... [/mm] abzählbar viele Mengen und [mm]\bigcup_{i=1}^{\infty}A_i \in \mathcal{R}[/mm]

Dann gilt:

[mm] \summe_{i=1}^{n}\lambda (A_i) [/mm] = [mm] \lambda (\bigcup_{i=1}^{n}A_i) \le \lambda (\bigcup_{i=1}^{\infty}A_i). [/mm]

Was folgt für [mm]n \to \infty[/mm]?
Nutze subvolladditivität (auch wenn ich den Begriff bisher nur als [mm]\sigma[/mm]-Halbadditivität gehört hab), dann steht die Volladditivität da.

Versuchs mal selbst zu begründen und weiterzumachen, wenn du noch Fragen hast, frag.

MfG,
Gono.

Bezug
                
Bezug
Subadditivität und Additivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Mi 11.02.2009
Autor: oby

Hallo.
Vielen Dank für die schnelle Antwort.
Ich denk ich habs verstanden. Allerdings verstehe ich das = Zeichen nicht, da man doch nur die additivität benutzen darf, wenn die [mm] A_i [/mm] alle disjunkt sind. Aber es funktioniert ja auch wenn man das = Zeichen durch [mm] \le [/mm] austauscht (Aus additiv folgt ja subadditiv, wobei die [mm] A_i [/mm] s nicht mehr paarweise disjunkt sein müssen) . Man kommt ja dann zum Schluss auf die Doppelungleichung
[mm] \summe_{i=1}^{\infty} \lamda [/mm] ( [mm] A_i [/mm] ) [mm] \le \lambda [/mm] ( [mm] \bigcup_{i=1}^{\infty} A_i [/mm] ) [mm] \le \summe_{i=1}^{\infty} \lamda [/mm] ( [mm] A_i [/mm] ). Woraus man dann die Gleichheit schließen kann. Ist das so richtig? Ausserdem benutzt man doch nirgends dass die [mm] \lambda [/mm] (C ) positiv sind, d.h. Gilt also immer, wenn eine Mengenfunktion additiv ist, dass dann Volladditivität genau dann wenn Subadditivität gilt?
MfG Oby

Bezug
                        
Bezug
Subadditivität und Additivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Mi 11.02.2009
Autor: oby

Sorry, hab in obiger Gleichung die Lambdas vergessen.

Bezug
                        
Bezug
Subadditivität und Additivität: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Do 12.02.2009
Autor: Gonozal_IX

Hiho,

>  Ich denk ich habs verstanden. Allerdings verstehe ich das
> = Zeichen nicht, da man doch nur die additivität benutzen
> darf, wenn die [mm]A_i[/mm] alle disjunkt sind.

Stimmt, ich hatte das "disjunkt" nur laut gedacht :-)

> Aber es funktioniert
> ja auch wenn man das = Zeichen durch [mm]\le[/mm] austauscht

Nein, weil allgemein bei Inhalten nur  [mm] \ge [/mm] gilt, du kommst sonst nicht aufs [mm] \le [/mm]

> Man kommt ja dann zum
> Schluss auf die Doppelungleichung
>  [mm]\summe_{i=1}^{\infty} \lamda[/mm] ( [mm]A_i[/mm] ) [mm]\le \lambda[/mm] ([mm]\bigcup_{i=1}^{\infty} A_i[/mm] ) [mm]\le \summe_{i=1}^{\infty} \lamda[/mm]
> ( [mm]A_i[/mm] ). Woraus man dann die Gleichheit schließen kann. Ist
> das so richtig?

Richtig.

> Ausserdem benutzt man doch nirgends dass
> die [mm]\lambda[/mm] (C ) positiv sind, d.h. Gilt also immer, wenn
> eine Mengenfunktion additiv ist, dass dann Volladditivität
> genau dann wenn Subadditivität gilt?
>  MfG Oby

Nunja, ich würde pauschal behaupten, die Rückrichtung (also die von dir als "klar" bezeichnete) geht ohne die Einschränkung [mm] \ge [/mm] 0 nicht.

Man nehme [mm]\mathcal{R} = \{\emptyset, A, A^{c}, X \}[/mm] mit

[mm]\lambda(M)=\begin{cases} -1, & M=A^c \\ 0, & M=\emptyset,X \\ 1, & M=A \end{cases}[/mm]

Offensichtlich ist [mm] \lambda [/mm] additiv, volladditiv, aber nicht subvolladditiv wie [mm]M = A^c \cup X[/mm] belegt.

MFG,
Gono.


Bezug
                                
Bezug
Subadditivität und Additivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Do 12.02.2009
Autor: oby

Ok.Super, alles klar. Vielen Dank Gonozal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]