www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Substitution
Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Idee
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 12.07.2014
Autor: Sema4Ever

Hallo,
ich weiß nicht wie ich bei dieser Aufgabe vorgehen muss:

Ich soll das folgende Integral mit Substitution lösen:

[mm] \integral_{0}^{\wurzel{\pi}}{x*cos(x^2+(\pi/2)) dx} [/mm]

Meine Idee:

Ich glaub ich muss [mm] (x^2+(\pi/2) [/mm] substituieren, oder?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Sa 12.07.2014
Autor: M.Rex

Hallo und [willkommenmr]

> Hallo,
> ich weiß nicht wie ich bei dieser Aufgabe vorgehen muss:

>

> Ich soll das folgende Integral mit Substitution lösen:

>

> [mm]\integral_{0}^{\wurzel{\pi}}{x*cos(x^2+(\pi/2)) dx}[/mm]

>

> Meine Idee:

>

> Ich glaub ich muss [mm](x^2+(\pi/2)[/mm] substituieren, oder?

Das ist eine Möglichkeit, bedenke, dass die Ableitung deiner Substitution 2x ist.

Also füge nochmal die 2 hinzu

[mm] \int x\cdot\cos\left(x^{2}+\frac{\pi}{2}\right)dx [/mm]
[mm] =\int \frac{1}{2}\cdot2x\cdot\cos\left(x^{2}+\frac{\pi}{2}\right)dx [/mm]
[mm] =\frac{1}{2}\cdot\int2x\cdot\cos\left(x^{2}+\frac{\pi}{2}\right)dx [/mm]

Jetzt substituiere mal, wie du vorgeschlagen hast, und beachte die Kettenregel der Ableitung, denn du bekommst im Integral die Form [mm] $\int u(x)\cdot [/mm] u'(x)dx$

Marius

Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Sa 12.07.2014
Autor: Sema4Ever

Und woher kommt die 1/2 ganz vorne?

Bezug
                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Sa 12.07.2014
Autor: M.Rex


> Und woher kommt die 1/2 ganz vorne?

Du brauchst für die Innere Ableitung noch den Faktor 2.

Um diesen zu  bekommen, multipliziere den Integranden mit [mm] \frac{1}{2}\cdot1 [/mm] also quasi mit einer "nahrhaften Eins".

Den Faktor [mm] \frac{1}{2} [/mm] brauchst du aber zur Berechnung des Integrales im inneren nicht mehr, daher kannst du diesen als konstanten Faktor vor das Integral ziehen.

Diesen Trick, sich etwas passendes hinzuzuholen, solltest du dir merken.
In der Schule taucht dieser Trick zum ersten mal bei der quadratischen Ergänzung auf, dann aber in einer "Nulladdition".

Marius

Bezug
                                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Sa 12.07.2014
Autor: Sema4Ever

Die Ableitung der inneren Klammer ist 2x und warum der Faktor 2 dann?

Bezug
                                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Sa 12.07.2014
Autor: M.Rex


> Die Ableitung der inneren Klammer ist 2x und warum der
> Faktor 2 dann?

Weil du erst mit diesem Faktor 2 die Form [mm] $\int u(x)\cdot [/mm] u'(x)dx$ hast.


Ich sehe aber gerade, dass es auch ohne diesen Weg geht.

[mm] \int x\cdot\cos\left(x^{2}+\frac{\pi}{2}\right)dx [/mm]

Mit [mm] u=x^{2}+\frac{\pi}{2}, [/mm] also [mm] \frac{du}{dx}=2x\Leftrightarrow dx=\frac{du}{2x} [/mm] ergibt sich
[mm] =\int x\cdot\cos\left(u\right)\frac{du}{2x} [/mm]
[mm] =\int \frac{1}{2}\cdot\cos\left(u\right)du [/mm]

Nun wieder du.

Marius

Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 12.07.2014
Autor: Sema4Ever

Ich verstehe jetzt was du gemacht hast du hast die Klammer integriert [mm] (x^2+(\pi/2)) [/mm] und somit 1/2 * 2x [mm] (x^2+(\pi/2) [/mm] bekommen aber warum hast du dann nochmal einen Integralzeichen geschrieben?

Bezug
                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Sa 12.07.2014
Autor: M.Rex


> Ich verstehe jetzt was du gemacht hast

Das glaube ich leider nicht

> du hast die Klammer
> integriert

Nein

> [mm](x^2+(\pi/2))[/mm] und somit 1/2 * 2x [mm](x^2+(\pi/2)[/mm]
> bekommen aber warum hast du dann nochmal einen
> Integralzeichen geschrieben?

Weil ich noch nirgendwo integriert habe.

Schau dich unbedingt mal bei []poenitz-net um., vor allem im Kapitel 5.5.5

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]