www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Substitution
Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:08 So 19.03.2006
Autor: robvandyke

Aufgabe
Berechnen Sie das Integral mit der angegebenen Substitution.
Integral von 0 bis (-ln2) über (e^(4x))/(e^(2x)+3)dx   t=e^(2x)+3

Hab n Problem mit der Aufgabe ..wär schön, wenn mir die mal jmd lösen könnte. Danke im Vorraus

Rob

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Substitution: Editor, Ansätze
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 So 19.03.2006
Autor: Fugre

Hi Robin,

es wäre gut, wenn du den Formeleditor benutzen würdest, außerdem
wäre es auch gut, wenn du uns schildern würdest woran es scheitert,
also eigene (wenn auch falsche Ansätze) aufzeigst.

Gruß
Nicolas

Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 Mo 20.03.2006
Autor: Sariel

Hab das mal so probiert:
[mm] \integral_{0}^{-ln2}{(\bruch {e^4^x}{e^2^x^+^3}) dx} [/mm]

t=2x+3

[mm] \integral_{0}^{-ln2}{{e^4^x}{e^-^t} \bruch{dt}{(\bruch{1}{2})e^2^x^+^3}} [/mm]

ist das richtig so ? oder ist der Ansatz mit dem [mm] \bruch{dt}{(\bruch{1}{2})e^2^x^+^3} [/mm] falsch ?


Bezug
                        
Bezug
Substitution: Aufgabenstellung unklar
Status: (Antwort) fertig Status 
Datum: 11:10 Mo 20.03.2006
Autor: Loddar

Hallo Sariel!


Gehört das $+ \ 3$ nun noch in den Exponenten oder nicht?


Falls ja:

Wende hier ein MBPotenzgesetz an:   [mm] $e^{4x} [/mm] \ : \ [mm] e^{2x+3} [/mm] \ = \ [mm] e^{4x-(2x+3)} [/mm] \ = \ [mm] e^{2x-3}$ [/mm]



Falls nein:

$t \ := \ [mm] e^{2x}+3$ $\gdw$ $e^{2x} [/mm] \ = \ t-3$

[mm] $\bruch{dt}{dx} [/mm] \ = \ [mm] 2*e^{2x} [/mm] \ = \ 2*(t-3)$    [mm] $\gdw$ [/mm]    $dx \ = \ [mm] \bruch{dt}{2*(t-3)}$ [/mm]


[mm] $\Rightarrow$ $\integral{\bruch{e^{4x}}{e^{2x}+3} \ dx} [/mm] \ = \ [mm] \integral{\bruch{\left(e^{2x}\right)^2}{e^{2x}+3} \ dx} [/mm] \ = \ [mm] \integral{\bruch{\left(t-3\right)^2}{t} \ \bruch{dt}{2*(t-3)}} [/mm] \ = \ [mm] \bruch{1}{2}*\integral{\bruch{t-3}{t} \ dt} [/mm] \ = \ ...$

Nun den Bruch [mm] $\bruch{t-3}{t}$ [/mm] in zwei Brüche zerlegen und integrieren.


Gruß
Loddar


Bezug
                                
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Mo 20.03.2006
Autor: Sariel

Ja, das mit dem +3 weiss ich nicht, aber Deine AUsführung hilft mir generell bei den e-Funktionen weiter.

Hab Dank, das hilft mir bei meinen Aufgaben weiter, die ich grade versuche zu lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]