www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationSubstitution (unbestimmt)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Substitution (unbestimmt)
Substitution (unbestimmt) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution (unbestimmt): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Sa 19.09.2009
Autor: thadod

Hallo Liebes Matheraum Team.

Ich habe mal bitte eine kleine Frage bezüglich folgender Aufgabe:

Gegeben ist das Integral [mm] \integral_{}^{}{u_{0} e^{\omega t} dt} [/mm]

Wenn ich mir dieses Integral genau anschaue, würde meine 1. Idee lauten, dass ganze Partiell zu integrieren.

Partielle Integration (allgemein): [mm] \integral_{}^{}{u(t) v'(t) dt}=|u(t) v(t)|-(\integral_{}^{}{u'(t) v(t) dt}) [/mm]

ich würde nun wähle:
u(t)= [mm] u_{0} \Rightarrow [/mm] u'(t)= 0
v'(t)= [mm] e^{\omega t} \Rightarrow [/mm] v(t)= Integration durch Substitution

Bevor ich mich nun auf den Weg ´zur Substitution machen wollte, wollte ich euch nun fragen, ob ihr mir zunächst hierfür zustimmen würdet.

Danke für euren Support

MFG thadod

        
Bezug
Substitution (unbestimmt): Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 19.09.2009
Autor: fencheltee


> Hallo Liebes Matheraum Team.
>  
> Ich habe mal bitte eine kleine Frage bezüglich folgender
> Aufgabe:
>  
> Gegeben ist das Integral [mm]\integral_{}^{}{u_{0} e^{\omega t} dt}[/mm]
>  
> Wenn ich mir dieses Integral genau anschaue, würde meine
> 1. Idee lauten, dass ganze Partiell zu integrieren.

naja, [mm] u_0 [/mm] ist doch ne konstante und [mm] \omega [/mm] auch... aber um dann das e^... zu integrieren kannst du nachher natürlich auch substituieren

>  
> Partielle Integration (allgemein): [mm]\integral_{}^{}{u(t) v'(t) dt}=|u(t) v(t)|-(\integral_{}^{}{u'(t) v(t) dt})[/mm]
>  
> ich würde nun wähle:
>  u(t)= [mm]u_{0} \Rightarrow[/mm] u'(t)= 0
>  v'(t)= [mm]e^{\omega t} \Rightarrow[/mm] v(t)= Integration durch
> Substitution
>  
> Bevor ich mich nun auf den Weg ´zur Substitution machen
> wollte, wollte ich euch nun fragen, ob ihr mir zunächst
> hierfür zustimmen würdet.
>  
> Danke für euren Support
>  
> MFG thadod


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]