www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSumme + Fakultät
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Summe + Fakultät
Summe + Fakultät < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe + Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Di 04.01.2011
Autor: Zuggel

Aufgabe
Gesucht ist die Summe folgender Reihe:

[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+x^{2n+1}+4^{2n}x^{2n}) [/mm]

Hallo zusammen

Nun gehen wirs an:

[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+x^{2n+1}+4^{2n}x^{2n}) [/mm]


Ausmultiplizieren

[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n} [/mm] + [mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1} [/mm] + [mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} [/mm] * [mm] 4^{2n}x^{2n}) [/mm]

wird zu

[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n} [/mm]
[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1} [/mm] -> sin(x)

[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} [/mm] * [mm] 4^{2n}x^{2n}) [/mm] Kann ich hier folgendes machen:
[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} [/mm] * [mm] 4^{2n}x^{2n}) *\bruch{4x}{4x} [/mm]
[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} [/mm] * [mm] (4x)^{2n+1}) *\bruch{1}{4x} [/mm]
[mm] \bruch{1}{4x} [/mm] * [mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} [/mm] * [mm] (4x)^{2n+1}) [/mm] = [mm] \bruch{1}{4x} [/mm] * sin(4x) ist?

Jedenfalls mein Problemkind ist, wie ihr vielleicht schon gesehen habt, das hier:


[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n} [/mm]


[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{2n}*2^{2n}*2*n*x^{2n} [/mm]
2* [mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{2n}*n*(2x)^{2n} [/mm]

Hier komme ich nicht mehr weiter. Bin ich überhaupt auf dem richtigen Weg oder habe ich etwas übersehen? Denn mein alternativer Weg wäre folgender:

  
[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+ 4^{2n}x^{2n})) [/mm] + [mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1} [/mm]

[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1} [/mm]  = sin(x)


[mm] \summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n+ 4^{2n}))*x^{2n} [/mm]

Nur bringt mich dieser Weg wieder auf diesen Problemkern mit [mm] (2^{4n+1}*n+ 4^{2n}) [/mm] wo ich mir nicht zu helfen weis...

Ich bitte um eine Rat!

Danke
lg

        
Bezug
Summe + Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 04.01.2011
Autor: weightgainer


> Gesucht ist die Summe folgender Reihe:
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+x^{2n+1}+4^{2n}x^{2n})[/mm]
>  
> Hallo zusammen
>  
> Nun gehen wirs an:
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+x^{2n+1}+4^{2n}x^{2n})[/mm]
>  
>
> Ausmultiplizieren
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n}[/mm]
> + [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1}[/mm] +
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm]4^{2n}x^{2n})[/mm]
>  
> wird zu
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n}[/mm]
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1}[/mm] ->
> sin(x)
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm]4^{2n}x^{2n})[/mm] Kann ich hier folgendes machen:
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm]4^{2n}x^{2n}) *\bruch{4x}{4x}[/mm]
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm]
> * [mm](4x)^{2n+1}) *\bruch{1}{4x}[/mm]
>  [mm]\bruch{1}{4x}[/mm] *
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm](4x)^{2n+1})[/mm] = [mm]\bruch{1}{4x}[/mm] * sin(4x) ist?
>
> Jedenfalls mein Problemkind ist, wie ihr vielleicht schon
> gesehen habt, das hier:
>  
>
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n}[/mm]
>
>
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{2n}*2^{2n}*2*n*x^{2n}[/mm]
>  
> 2* [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{2n}*n*(2x)^{2n}[/mm]
>  
> Hier komme ich nicht mehr weiter. Bin ich überhaupt auf
> dem richtigen Weg oder habe ich etwas übersehen? Denn mein
> alternativer Weg wäre folgender:
>  
>
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+ 4^{2n}x^{2n}))[/mm]
> + [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1}[/mm]
>
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1}[/mm]  =
> sin(x)
>  
>
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n+ 4^{2n}))*x^{2n}[/mm]
>  
> Nur bringt mich dieser Weg wieder auf diesen Problemkern
> mit [mm](2^{4n+1}*n+ 4^{2n})[/mm] wo ich mir nicht zu helfen
> weis...

Das ist nicht so schwer, wie es hier bei dir aussieht, denn:
[mm] $2^{4n+1} [/mm] = 2* [mm] 2^{4n} [/mm] = [mm] 2*2^{2*2n} [/mm] = [mm] 2*(2^{2})^{2n} [/mm] = [mm] 2*4^{2n}$ [/mm]

Also steht da: [mm] $(2n+1)*x^{2n}$ [/mm]

Die Klammer kannst du dann mit der Fakultät kürzen und dann siehst du es bestimmt :-)



>  
> Ich bitte um eine Rat!
>  
> Danke
>  lg

lg weightgainer

Bezug
        
Bezug
Summe + Fakultät: Vielleicht, vielleicht nicht..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 04.01.2011
Autor: Marcel

Hallo,

weil ich nicht weiß, ob's hier hilft:
Wenn ich derartiges sehe:

> Gesucht ist die Summe folgender Reihe:
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+x^{2n+1}+4^{2n}x^{2n})[/mm]
>  
> Hallo zusammen
>  
> Nun gehen wirs an:
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *(2^{4n+1}*n*x^{2n}+x^{2n+1}+4^{2n}x^{2n})[/mm]
>  
>
> Ausmultiplizieren
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n}[/mm]
> + [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1}[/mm] +
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm]4^{2n}x^{2n})[/mm]
>  
> wird zu
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n}[/mm]
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *x^{2n+1}[/mm] ->
> sin(x)
>  
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm]4^{2n}x^{2n})[/mm] Kann ich hier folgendes machen:
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm]4^{2n}x^{2n}) *\bruch{4x}{4x}[/mm]
>  [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm]
> * [mm](4x)^{2n+1}) *\bruch{1}{4x}[/mm]
>  [mm]\bruch{1}{4x}[/mm] *
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!}[/mm] *
> [mm](4x)^{2n+1})[/mm] = [mm]\bruch{1}{4x}[/mm] * sin(4x) ist?
>
> Jedenfalls mein Problemkind ist, wie ihr vielleicht schon
> gesehen habt, das hier:
>  
>
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^n}{(2n+1)!} *2^{4n+1}*n*x^{2n}[/mm]

also Dein Problemkind, dann denke ich automatisch an drei Sachen, die helfen könnten:
1. Wenn ich die Konvergenz einer Reihe [mm] $\sum_{n=0}^\infty a_n$ [/mm] weiß und deren Grenzwert und zudem die Konvergenz und den Grenzwert einer anderen, speziellen Reihe [mm] $\sum_{k=0}^\infty a_{n_k}\,,$ [/mm] wobei [mm] $(a_{n_k})_k$ [/mm] eine Teilfolge von [mm] $(a_n)_n$ [/mm] ist, dann kann ich doch
[mm] $$\Sigma_{i \in I}a_i=\sum_{n=0}^\infty a_n -\sum_{k=0}^\infty a_{n_k}$$ [/mm]
berechnen, wobei [mm] $I:=\IN_0 \setminus \{n_k: k \in \IN_0\}$ [/mm] und  [mm] $\Sigma_{i \in I}a_i$ [/mm] hier bedeutet, dass die Teilsummenfolge entsprechend "der durch [mm] $I\,$ [/mm] gegebenen Teilfolge" zu bilden ist.

2. Ich suche mal, ob nicht irgendwie das Cauchyprodukt hier verwendet werden kann.

3. Ich schaue, ob nicht irgendwo die Ableitung oder eine Stammfunktion einer Potenzfunktion auftaucht.

Das sind jedenfalls "Standardstichworte" für eine derartige Reihe. Zu guter letzt kann man auch mal in der Fourieranalysis ein wenig nachschlagen. Aber das braucht man hier vermutlich noch nicht...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]