Summe der Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei q [mm] \in\ [/mm] IR, [mm] \left| q \right| [/mm] <1. Begründen Sie die angegebene Gleichung und ermitteln Sie die Summe der Reihen
[mm] \summe_{(k,l)\in\IN_0\times IN_0}^{} [/mm] q^(k+1) = [mm] \summe_{n=1}^{N} [/mm] n*q^(n-1) . |
Also ich muss noch dazu sagen, dass ich mit N unendlich meine, da ich aber leider nicht wusste wie ich unendlich mit den Zeichen darstelle, musste ich N dafür nehmen!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi!! Ich bins mal wieder, ich hab ein Problem mit dieser Frage! Ich weiß zwar dass die Summe der Reihe gegen Unendlich geht, aber ich weiß weder wie ich das beweisen soll, noch wie ich diese Gleichung begründen kann. Deshalb bin ich für jegliche Hilfe sehr dankbar!!
MfG, Susi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:30 Di 28.11.2006 | Autor: | leduart |
Hallo susi
Um die Gleichung zu beweisen schreib dir mal links ein paar Glieder hin, rechts siehst dus ja wohl auch so.
die rechte Summe bis N nenn ich [mm] S_N [/mm] bilde [mm] S_N-q*S_N [/mm] schreib wieder die ersten paar Glieder hin. Das Ergebnis solltest du wiedererkennen und berechnen koennen. und wenn du [mm] S_N*(q-1) [/mm] kennst dann auch [mm] S_N
[/mm]
gruss leduart
|
|
|
|