www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSumme von Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Summe von Potenzreihe
Summe von Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Fr 20.06.2008
Autor: Vogelfaenger

Aufgabe
Wir betrachten die Potenzreihe
[mm] \summe_{n=1}^{\infty}n^{3} ln(1+n^{2})x^{n} [/mm]
mit der Summe [mm] f^{} [/mm]

a)
Findet 2 Potenzreihen, deren Summen die funktionen [mm] f_{\pm}(x): [/mm] ]-1, 1[ [mm] \to \IR [/mm] sind, definiert durch
[mm] f_{+}(x)=\bruch{1}{2}(f(x)+f(-x)) [/mm] und  [mm] f_{-}(x)=\bruch{1}{2}(f(x)-f(-x)) [/mm]

b)
Erklärt, dass es 2 differenzierbare Funktionen g und h auf das Interval ]-1, 1[ gibt, so dass
[mm] f(x)=g(x^{2})+xh(x^{2}) [/mm] für [mm] x^{} \in [/mm] ]-1, 1[
und findet g'(0) und h'(0)

Hallo Alle

Hat jemand bitte Ideen zur Lösung dieser Aufgaben?
Ich hab rausgefunden, dass die Reihe Konvergenzradius 1 hat, kann aber nicht richtig weiterkommen.

        
Bezug
Summe von Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Fr 20.06.2008
Autor: Al-Chwarizmi

Hallo Vogelfaenger,

nur ein kleiner aber wichtiger Tipp zum Beginnen:

[mm] (-x)^n =-x^n [/mm]    für ungerades n

[mm] (-x)^n =x^n [/mm]     für gerades n

zerlege zuerst f(x) in eine Summe:  [mm] f_u(x)+f_g(x) [/mm]     (ungerade+gerade Funktion)

Bezug
                
Bezug
Summe von Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:49 Sa 21.06.2008
Autor: Vogelfaenger

Hallo Al-Chwarizmi

Ok, also du meinst so;
[mm] f(x)=\summe_{n=1}^{\infty}n^{3}ln(1+n^{2})x^{n}=ln2*x+2^{3}ln5*x^{2}+3^{3}ln10*x^{3} [/mm]
und [mm] f(-x)=\summe_{n=1}^{\infty}n^{3}ln(1+n^{2})(-x)^{n}=-ln2*x+2^{3}ln5*x^{2}-3^{3}ln10*x^{3} [/mm]
und dann
[mm] f(x)+f(-x)=\summe_{n=1}^{\infty}(2n)^{3}ln(1+(2n)^{2})x^{2n} [/mm]
und ebenso mit
[mm] f(x)-f(-x)=\summe_{n=0}^{\infty}(2n+1)^{3}ln(1+(2n+1)^{2})x^{2n+1} [/mm]

Richtig so?

Bezug
                        
Bezug
Summe von Potenzreihe: zerlegen
Status: (Antwort) fertig Status 
Datum: 11:06 Sa 21.06.2008
Autor: Loddar

Hallo Vogelfänger!


> [mm]f(x)=\summe_{n=1}^{\infty}n^{3}ln(1+n^{2})x^{n}=ln2*x+2^{3}ln5*x^{2}+3^{3}ln10*x^{3}[/mm]

Wie um Himmels Willen kommst Du auf diesen letzten Term? [aeh]


Betrachte - wie oben vorgeschlagen - gerade und ungerade $n_$ getrennt:

$$f(x) \ = \ [mm] f_u(x)+f_g(x)$$ [/mm]
[mm] $$f_u(x) [/mm] \ = \ [mm] \summe_{k=1}^{\infty}(2k-1)^3*\ln\left[1+(2k-1)^2\right]*x^{2k-1}$$ [/mm]
[mm] $$f_g(x) [/mm] \ = \ [mm] \summe_{k=1}^{\infty}(2k)^3*\ln\left[1+(2k)^2\right]*x^{2k}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Summe von Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Sa 21.06.2008
Autor: Vogelfaenger


> Wie um Himmels Willen kommst Du auf diesen letzten Term?
> [aeh]

Was ich meinte war
[mm] \summe_{n=1}^{\infty}n^{3}ln(1+n^{2})x^{n}=ln2*x+2^{3}ln5*x^{2}+3^{3}ln10*x^{3}+ [/mm] ... usw.

Bezug
                                
Bezug
Summe von Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Sa 21.06.2008
Autor: Al-Chwarizmi


> Hallo Vogelfänger!
>  
> [mm]f(x)=\summe_{n=1}^{\infty}n^{3}ln(1+n^{2})x^{n}=ln2*x+2^{3}ln5*x^{2}+3^{3}ln10*x^{3}[/mm]
>  
> Wie um Himmels Willen kommst Du auf diesen letzten Term?
> [aeh]
>  
> Betrachte - wie oben vorgeschlagen - gerade und ungerade [mm]n_[/mm]
> getrennt:
>  
> [mm]f(x) \ = \ f_u(x)+f_g(x)[/mm]
>  [mm]f_u(x) \ = \ \summe_{k=1}^{\infty}(2k-1)^3*\ln\left[1+(2k-1)^2\right]*x^{2k-1}[/mm]
>  
> [mm]f_g(x) \ = \ \summe_{k=1}^{\infty}(2k)^3*\ln\left[1+(2k)^2\right]*x^{2k}[/mm]
>  
> Gruß
>  Loddar
>

hallo Vogelfaenger und Loddar,

es ist beides richtig !

Auf den Term  

[mm]f(x)=\summe_{n=1}^{\infty}n^{3}ln(1+n^{2})x^{n}=ln2*x+2^{3}ln5*x^{2}+3^{3}ln10*x^{3}[/mm]

(den man hinten noch durch pünktchenpünktchenpünktchen
ergänzen sollte) kommt man, wenn man einfach einige
Glieder konkret aufschreibt. Dies kann man jetzt ausein-
andernehmen in

          [mm] f_u(x)=\summe_{u=1}^{\infty}u^3*ln(1+u^2)x^u=1*ln(2)*x+27*ln(10)*x^3+..... [/mm]
              [mm]u\ ungerade[/mm]

          [mm] f_g(x)=\summe_{g=2}^{\infty}g^3*ln(1+g^2)x^g=8*ln(5)*x^2+64*ln(17)*x^4+..... [/mm]
              [mm]g\ gerade[/mm]

Tatsächlich ist [mm] f_g(x)=f_+(x) [/mm] und [mm] f_u(x)=f_-(x) [/mm]  (siehe Aufgabenstellung)
wie man leicht nachrechnen kann.

Mit dieser Zerlegung ist es auch nicht mehr schwierig,
den Rest der Aufgabe zu lösen.

LG       Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]