Summenentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:38 Sa 23.07.2016 | Autor: | phifre |
Aufgabe | Man zeige: Jede reelle Zahl $x$ mit [mm] $|x|\leq\tfrac{1}{2}$ [/mm] lässt sich schreiben als
$$ [mm] x=\sum_{k=1}^{\infty}\frac{\varepsilon_k}{3^k} \quad \text{ mit }\quad \varepsilon_k\in \{-1,0,1\} \quad \text{ für alle } k\in\mathbb{N}$$ [/mm] |
Hallo!
Ich bin mir bei der Aufgabe nicht sicher, ob ich sie richtig lösen kann.
Ich habe o.B.d.A. angenommen, dass [mm] $x\geq0$ [/mm] ist. Die größte Zahl, die sich damit darstellen lässt ist [mm] $$\sum_{k=1}^{\infty}\frac{1}{3^k} [/mm] = [mm] \frac{1}{1-\frac{1}{3}}-1=\frac{1}{2}.$$ [/mm] Also läuft die Summe auf jeden Fall betragsmäßig nicht über [mm] $\tfrac{1}{2}$ [/mm] hinaus.
Ich dachte jetzt kann man die [mm] $\varepsilon_k$ [/mm] rekursiv definieren, indem man anfängt mit [mm] $$\varepsilon_1 [/mm] = [mm] \begin{cases} 1 & \text{wenn } x\geq\frac{1}{3}\\ 0 & \text{sonst}\end{cases}.$$
[/mm]
Sind nun [mm] $\varepsilon_1,\ldots,\varepsilon_{i-1}$ [/mm] bereits gewählt, so setze
[mm] $$\varepsilon_i [/mm] = [mm] \begin{cases} \hfill -1 & \text{wenn } \sum_{k=1}^{i-1}\frac{\varepsilon_k}{3^k} > x\\ \hfill 0 & \text{wenn } \sum_{k=1}^{i-1}\frac{\varepsilon_k}{3^k} = x\\ \hfill 1 & \text{wenn } \sum_{k=1}^{i-1}\frac{\varepsilon_k}{3^k} < x \end{cases}$$
[/mm]
Dann ist die Summe auf jeden Fall eine Cauchy Folge, also konvergent.
Ich befürchte allerdings, dass es passieren kann, dass man sich mit einem [mm] $\varepsilon_i$ [/mm] "zu weit" von dem $x$ entfernt und mit den nachfolgenden Summanden nicht mehr dicht genug dran kommt.
Eine Idee von mir war noch, dass man mindestens die Anfangsbedigung abändern muss in [mm] $$\varepsilon_1 [/mm] = [mm] \begin{cases} 1 & \text{wenn } x\geq\frac{1}{6}\\ 0 & \text{sonst}\end{cases}.$$
[/mm]
Freue mich über Vorschläge!
Liebe Grüße
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:22 So 24.07.2016 | Autor: | phifre |
Kann mir keiner helfen? :(
Muss auch keine Korrektur meines Ansatzes sein, bin auch für neue Lösungsansätze offen!
Die Aufgabenstellung sollte doch eigentlich nicht das Problem darstellen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:33 So 24.07.2016 | Autor: | leduart |
Hallo
wenn da [mm] e_k [/mm] in [0,1,2] stünde wäre es einfach x im 3 er System. und damit bist du fertig, da ja jede reelle Zahl auch im 3 erSystem dargestellt werden kann.
also musst du nur eine Methode finden, die 2=-1mod 3 zu ersetzen, z.b. an irgendeiner Stelle k dann bist du fertig Anfangs ist es leicht. -2/9=-0,02=0.1(-1), bis zu Ende hab ich es nicht überlegt, aber bin sicher, dass es geht, Dagegen scheint es mir Aussichtslos das im Dezimalyystem zu überlegen,( vielleicht geht es aber auch über eine Intervallschachtelung direkt im 3 er System, das habe ich noch nicht ausprobiert.)
Gruß leduart
|
|
|
|