www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteSummenwert Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Summenwert Reihe
Summenwert Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenwert Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 18.10.2007
Autor: Martinius

Hallo,

hat zufällig jemand den Summenwert folgender Reihe zur Hand? Ich komm' nicht drauf.

[mm]1*2 + 2*3 + 3*4 + 4*5 + 5*6 +...+ n(n+1)[/mm] = ?

Vielen Dank im voraus.

LG, Martinius

        
Bezug
Summenwert Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Do 18.10.2007
Autor: angela.h.b.


> hat zufällig jemand den Summenwert folgender Reihe zur
> Hand? Ich komm' nicht drauf.
>  
> [mm]1*2 + 2*3 + 3*4 + 4*5 + 5*6 +...+ n(n+1)[/mm] = ?

Hallo,

"zur Hand" hab' ich den Reihenwert nicht, aber es ist doch

1*2 + 2*3 + 3*4 + 4*5 + 5*6 +...+ n(n+1)

[mm] =1^2+1+2^2+2+3^2+3+...+n^2+n [/mm]

= zwei endl. Reihen, die Du sicher zur Hand hast.

Gruß v. Angela

Bezug
        
Bezug
Summenwert Reihe: Polynom 3. Grades
Status: (Antwort) fertig Status 
Datum: 21:33 Do 18.10.2007
Autor: Loddar

Hallo Martinius!


Wenn man sich die ersten Summenglieder aufschrreibt, stellt man fest, dass es sich um eine arithmetische Folge 3. Ordnung handet: also um ein Polynom 3. Grades.

Ich habe erhalten:   [mm] $\summe_{k=1}^{n}k*(k+1) [/mm] \ = \ [mm] \bruch{n^3+3*n^2+2*n}{3}\ [/mm] = \ [mm] \bruch{n*(n+1)*(n+2)}{3}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Summenwert Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Do 18.10.2007
Autor: schachuzipus

Hi Loddar,

ich glaube, du hast vergessen, die $6$ bei dem $6n$ im Zähler gegen die $3$ zu kürzen bzw. vergessen, es aufzuschreiben ;-)

Es ist $ [mm] \summe_{k=1}^{n}k\cdot{}(k+1) [/mm] \ = \ [mm] \bruch{n^3+3\cdot{}n^2+\red{2}\cdot{}n}{3} [/mm] $


Lieben Gruß

schachuzipus

Bezug
                        
Bezug
Summenwert Reihe: korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Do 18.10.2007
Autor: Loddar

Hallo Schachuzipus!


Danke für's Aufpassen! Daher schreibe ich dann auch "ohne Gewähr" ;-) .
Oben ist es nunmehr korrigiert.

Gruß
Loddar


Bezug
                
Bezug
Summenwert Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Do 18.10.2007
Autor: Martinius

Hallo Angela, hallo Loddar,

vielen Dank für eure Antworten.

Es ist $ [mm] \summe_{k=1}^{n}k\cdot{}(k+1) [/mm] \ = \ [mm] \bruch{n^3+3\cdot{}n^2+2\cdot{}n}{3} [/mm] $

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]