www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesSupremum/Infimum einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Supremum/Infimum einer Menge
Supremum/Infimum einer Menge < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum/Infimum einer Menge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:19 Sa 11.11.2006
Autor: sirdante

Aufgabe
Bestimme sup(X) und inf(X), falls existent. X = [mm] \{x \in \IR | x = \bruch{1}{2n}, n \in \IN \} [/mm]

Hallöchen!

Habe diese Sache mit dem Supremum und Infimum ganz gut verstanden, habe allerdings noch ein kleines Problem. Aber zunächst meine Vorgehensweise:

x = [mm] \bruch{1}{2n}, [/mm] n [mm] \in \IN [/mm]   =>   [mm] \bruch{1}{2} \ge \bruch{1}{2n} [/mm] = x  [mm] \forall [/mm] n [mm] \in \IN [/mm]   =>   [mm] \bruch{1}{2} [/mm]   ist obere Schranke von X

Außerdem  [mm] \bruch{1}{2} \in [/mm] X, also   [mm] \bruch{1}{2} [/mm] = max(X) = sup(X)

Beim Infimum habe ich nun meine Probleme:

Behauptung: inf(X) = 0        
Annahme: es gibt eine größere untere Schranke a von X
=>  a > 0 und a [mm] \le [/mm] x  [mm] \forall [/mm] x [mm] \in [/mm] X   =>   inf(X) = [mm] 0+\varepsilon [/mm] , [mm] \varepsilon [/mm] > 0

aber nun bekomme ich Probleme... ich würde dies natürlich gerne zum Widerspruch führen... aber wie mache ich das? Meine Idee: Ich nehme ein neues Element b, welches kleiner als  [mm] 0+\varepsilon [/mm] ist und zeige, dass es in X liegt.

zb: b := [mm] \bruch{\varepsilon}{2} [/mm]

irgendwie verhakle ich mich da... kann mir jemand zeigen wie ich das mache? oder bin ich da auf dem falschen Dampfer?

Ich danke Euch im vorraus!

        
Bezug
Supremum/Infimum einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:47 So 12.11.2006
Autor: Martin243

Hallo,

du bist schon auf dem richtigen Dampfer.

Wenn wir annehmen, dass [mm] $\inf(X)=\varepsilon$, [/mm] dann müssen wir ein [mm] $n\in \IN$ [/mm] finden, so dass $x$ unser Infimum unterschreitet.

Sei [mm] $n_0 [/mm] := [mm] \bruch{1}{\varepsilon}$. [/mm]
Dann gilt: [mm] $x_0 [/mm] = [mm] \bruch{1}{2n_0} [/mm] = [mm] \bruch{\varepsilon}{2} [/mm] < [mm] \varepsilon$. [/mm]
Das widerspricht aber unserer Annahme, dass [mm] $\varepsilon>0$ [/mm] das Infimum unserer Menge ist. Also war unsere Annahme falsch!


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]