Supremumsnorm - Hilbertraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | (a) Sei X [mm] \not= \emptyset [/mm] eine Menge und E := [mm] l^\infty(X) [/mm] der in Beispiel 1.9b definierte Raum mit der ebenfalls definierten Norm [mm] \parallel \cdot \parallel_\infty. [/mm] Zeigen Sie, dass die beiden Aussagen
(i) X ist einelementig,
(ii) Es gibt ein Skalarprodukt auf E, dass die Norm [mm] \parallel \cdot \parallel_\infty [/mm] erzeugt und E zu einem Hilbertraum macht.
äquivalent sind.
(b) Seien a,b [mm] \in \IR [/mm] mit a < b und f:[a,b] [mm] \to\IK [/mm] eine beschränkte Funktion, die an höchstens endlich vielen Stellen unstetig ist. Für alle [mm] \varphi \in [/mm] C([a,b]) gelte
[mm] \integral_{a}^{b}{f(t) \varphi(t) dt} [/mm] = 0.
Zeigen Sie, dass dann die Funktion f, dort wo sie stetig ist, verschwindet.
Beispiel 1.9b:
[mm] l^\infty(X) :=\{f:X\to \IK | f \text{ } beschr"ankt\}
[/mm]
[mm] \parallel [/mm] f [mm] \parallel_\infty [/mm] := [mm] \sup_{x \in X} [/mm] |f(x)| und [mm] |\cdot| [/mm] ist eine Norm in [mm] \IK [/mm] |
Hallo,
leider habe ich mit diesen beiden Aufgaben so meine "Problemchen" :) Wir hatten bisher in der Vorlesung allg. Normen, Hilberträume, lineare Operatoren/Operatornorm und den Satz von Riesz (grobe Zusammenfassung).
Bei der Aufgabe (a) bin ich nur darauf gekommen, da X einelementig ist, dass die Supremumsnorm von f gleich der Norm von f in [mm] \IK [/mm] ist:
[mm] \parallel [/mm] f [mm] \parallel_\infty [/mm] := [mm] \sup_{x \in X} [/mm] |f(x)| = |f(x)|.
Aber ob mir das überhaupt an irgendeiner Stelle was bringt, hab ich leider keine Ahnung.
Bei Aufgabe (b) bin ich jetzt auch schon eine Weile am rumüberlegen und habe noch keine Idee für irgendeinen Ansatz.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:11 Mi 12.05.2010 | Autor: | SEcki |
> Bei der Aufgabe (a) bin ich nur darauf gekommen, da X
> einelementig ist, dass die Supremumsnorm von f gleich der
> Norm von f in [mm]\IK[/mm] ist:
> [mm]\parallel[/mm] f [mm]\parallel_\infty[/mm] := [mm]\sup_{x \in X}[/mm] |f(x)| =
> |f(x)|.
Genau
> Aber ob mir das überhaupt an irgendeiner Stelle was
> bringt, hab ich leider keine Ahnung.
Man muss folgendes sehen: wieviele beschränkte Funktionen gibt es denn hier? Anders: du kannst zu jedem Köperelement genau ein Urbild finden. Nun kannst du dir mal überlegen zu welchem Raum der dann isomoprh ist ...
Falls du min. 2 Elemente hast, musst du die Annahme zum Widerspruch führen, da findest du dann Elemente mit [m]||f||+||g||=||f+g||[/m]
> Bei Aufgabe (b) bin ich jetzt auch schon eine Weile am
> rumüberlegen und habe noch keine Idee für irgendeinen
> Ansatz.
Nimm eine Stetigekitsstelle x. Finde dann ein, so dass [m]f*\phi\ge 0[/m] uns stetig ist(eine SPitze um die Stetigkeitsstelle herum, die das gleiche Vorzeichen wie f hat und verschwindet). Was weisst du wenn das Integral einer stetigen Funktion mit [m]\ge 0[/m] verschwindet?
SEcki
|
|
|
|