www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreSurjektion, Injektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - Surjektion, Injektion
Surjektion, Injektion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektion, Injektion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:10 Di 07.11.2006
Autor: zetamy

Aufgabe
Beweisen Sie folgende Aussagen:
a) [mm]f: X\to Y[/mm] ist genau dann surjektiv, wenn für beliebige Abbildungen [mm]g_1, g_2:Y\to Z[/mm] aus [mm]g_1\circ f=g_2\circ f[/mm] die Beziehung [mm]g_1=g_2[/mm] folgt.

b) [mm]g:X\to Z[/mm] ist genau dann injektiv, wenn für beliebige Abbildungen [mm]f_1, f_2: X\to Y[/mm] aus [mm]g\circ f_1=g\circ f_2[/mm] folgt.

Hallo,

meine Lösungen scheinen mir selbst nicht ganz schlüssig. Bin für jeden Tipp/jede Korrektur dankbar.

a) Sei f surjektiv, also gilt: [mm]\forall y\in Y \exists x\in X[/mm] mit [mm]f(x)=y [/mm] und seien [mm]g_1, g_2: Y\to Z[/mm] beliebige Abbildungen mit [mm]g_1(y)=z[/mm] und [mm]g_2(y)=z \forall y\in Y[/mm]. Dann existiert [mm]\forall z\in Z[/mm], für die [mm]g_1(y)=z[/mm] gilt, min ein [mm]x\in X[/mm] mit [mm]g_1(y)=g_1(f(x))=(g_1\circ f)(x)=z[/mm]. Ebenso für g2. Daraus folgt [mm]g_1\circ f=g_2\circ f[/mm], wenn gilt [mm] g_1=(g_2\circ f)\circ f=g_2\circ(f\circ f)=g_2[/mm].
Dann ist jedem [mm] z\in Z [/mm], für das gilt [mm] (g\circ f)=z [/mm] auch min ein [mm] y\in Y [/mm] zugeordnet und daher jedem [mm] y\in Y [/mm] min ein [mm] x\in X [/mm], also f surjektiv.

b) Sei g injektiv, so gilt laut Def [mm]\forall z\in Z[/mm] existiert höchstens ein [mm]y\in Y[/mm], und seien [mm]f_1, f_2[/mm] beliebige Abb. Da zudem jedem [mm]x\in X[/mm] genau ein [mm]y\in Y[/mm] und jedem [mm]y\in Y[/mm] genau ein [mm]z\in Z[/mm] zugeordnet ist, existiert für jedes [mm]x\in X[/mm] genau ein [mm]z\in Z[/mm]. Dann existiert für alle [mm]x\in X[/mm] mit [mm]f_1(x)=y[/mm] bzw [mm]f_2(x)=x[/mm], für die g(y)=z gilt, auch ein [mm]z\in Z[/mm] mit [mm](g\circ f_1)(x)=z[/mm] bzw [mm](g\circ f_2)(x)=z[/mm]. Da g injektiv folgt, [mm]g\circ f_1=g\circ f_2=z[/mm], also [mm]f_1=g\circ(g\circ f_2)=(g\circ g)\circ f_2=f_2[/mm].
Dann ist jedem [mm]x\in X[/mm], für das f(x)=y gilt, genau ein [mm]z\in Z[/mm] zugeordnet. Da f beliebig, muss g inj sein.


Hoffentich ist das kein zu großer Schwachsinn ;-).

Vielen Dank nochmal, zetamy.

        
Bezug
Surjektion, Injektion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 07.11.2006
Autor: DaMenge

Hallo,


>  
> a) Sei f surjektiv, also gilt: [mm]\forall y\in Y \exists x\in X[/mm]
> mit [mm]f(x)=y[/mm] und seien [mm]g_1, g_2: Y\to Z[/mm] beliebige Abbildungen
> mit [mm]g_1(y)=z[/mm] und [mm]g_2(y)=z \forall y\in Y[/mm]. Dann existiert
> [mm]\forall z\in Z[/mm], für die [mm]g_1(y)=z[/mm] gilt, min ein [mm]x\in X[/mm] mit
> [mm]g_1(y)=g_1(f(x))=(g_1\circ f)(x)=z[/mm]. Ebenso für g2. Daraus
> folgt [mm]g_1\circ f=g_2\circ f[/mm], wenn gilt [mm]g_1=(g_2\circ f)\circ f=g_2\circ(f\circ f)=g_2[/mm].
>  

da steckt schon der Wurm drin.
mach es mal ganz richtig indem du beide Richtungen seperat zeigst, also:
1) sei f surjektiv, dann folgt : "aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm]

2) es gelte : "aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm] dann folgt daraus, dass f surjektiv ist.

zu 1) f sei surjektiv und es gelte  [mm]g_1\circ f=g_2\circ f[/mm] , angenommen es würde dann nicht gelten, dass [mm] g_1=g_2 [/mm] ist, dann gibt es also ein y mit [mm] $g_1(y)\not= g_2(y)$ [/mm] , zu diesem y gibt es aber wegen der surjektivität von f ein x, so dass...
schaffst du den rest hier von 1)  ?

zu 2) es gelte für BELIEBIGE [mm] g_1 [/mm] und [mm] g_2 [/mm] die Aussage:
"aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm] , angenommen f sei nicht surjektiv, d.h. es gibt ein y, dass "nicht getroffen wird", was passiert wenn du dir [mm] g_1 [/mm] und [mm] g_2 [/mm] wählst mit [mm] $g_1(y)\not= g_2(y)$ [/mm] ?!?

>  
> b) Sei g injektiv, so gilt laut Def [mm]\forall z\in Z[/mm]
> existiert höchstens ein [mm]y\in Y[/mm], und seien [mm]f_1, f_2[/mm]
> beliebige Abb. Da zudem jedem [mm]x\in X[/mm] genau ein [mm]y\in Y[/mm] und
> jedem [mm]y\in Y[/mm] genau ein [mm]z\in Z[/mm] zugeordnet ist, existiert für
> jedes [mm]x\in X[/mm] genau ein [mm]z\in Z[/mm]. Dann existiert für alle [mm]x\in X[/mm]
> mit [mm]f_1(x)=y[/mm] bzw [mm]f_2(x)=x[/mm], für die g(y)=z gilt, auch ein
> [mm]z\in Z[/mm] mit [mm](g\circ f_1)(x)=z[/mm] bzw [mm](g\circ f_2)(x)=z[/mm]. Da g
> injektiv folgt, [mm]g\circ f_1=g\circ f_2=z[/mm],

ja, bis hierhin scheint es zwar nicht wirklich voran zu kommen, aber es ist zumindest nicht falsch.


> also
> [mm]f_1=g\circ(g\circ f_2)=(g\circ g)\circ f_2=f_2[/mm].


Das hier ergibt keinen Sinn - rein von der Schreibweise kannst du nicht g nach g schreiben... (war im Teil a) auch schon falsch)

>  Dann ist
> jedem [mm]x\in X[/mm], für das f(x)=y gilt, genau ein [mm]z\in Z[/mm]
> zugeordnet. Da f beliebig, muss g inj sein.

versuch doch auch hier mal beide Richtungen seperat (und am einfachsten mit Widerspruch) zu führen, denn die zweite Richtung hast du versucht da im letzten Satz unterzubringen, was eindeutig zu wenig ist.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]