www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeSurjektiv, injektiv
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Surjektiv, injektiv
Surjektiv, injektiv < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektiv, injektiv: Endlichkeit
Status: (Frage) beantwortet Status 
Datum: 14:48 Mo 03.11.2008
Autor: mathefragen0815

Aufgabe
Sei S eine endliche Menge, und F : S [mm] \to [/mm] S eine Abbildung. Zeigen Sie: f ist genau dann injektiv, wenn f surjektiv ist.
Zeigen Sie, daß die Annahme der Endlichkeit von S wesentlich ist.

Ich habe diese Frage ín keinem anderen Forum gestellt.

Hallo,

ich hab ein Problem bei der oben stehenden Aufgabe. Ich bekomme den Ansatz nicht hin.

Mein Gedanke ist folgender:

f ist injektiv, wenn aus der Gleichheit der Funktionswerte  die Gleichheit der in die Funktion eingesetzten x-Werte folgt.

Surjektivität :jedes Element von f(x) ist mindestens einmal als Funktionswert angenommen, also hat mindestens ein Urbild.

Aber wie mache ich den Beweis und warum folgt das eine auf das andere?

Ich bin hier überfordert, verstehe auch nicht wieso das für die Endlichkeit relevant ist!

Bitte helft mir!  Danke!!

        
Bezug
Surjektiv, injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mo 03.11.2008
Autor: fred97


> Sei S eine endliche Menge, und F : S [mm]\to[/mm] S eine Abbildung.
> Zeigen Sie: f ist genau dann injektiv, wenn f surjektiv
> ist.
>  Zeigen Sie, daß die Annahme der Endlichkeit von S
> wesentlich ist.
>  Ich habe diese Frage ín keinem anderen Forum gestellt.
>  
> Hallo,
>  
> ich hab ein Problem bei der oben stehenden Aufgabe. Ich
> bekomme den Ansatz nicht hin.
>  
> Mein Gedanke ist folgender:
>  
> f ist injektiv, wenn aus der Gleichheit der Funktionswerte  
> die Gleichheit der in die Funktion eingesetzten x-Werte
> folgt.

O.K.


>  
> Surjektivität :jedes Element von f(x) ist mindestens einmal
> als Funktionswert angenommen, also hat mindestens ein
> Urbild.

Unsinn !!!

Eine Funktion f:A-->B heißt surjektiv [mm] \gdw [/mm] zu jedem b [mm] \in [/mm] B gibt es ein a [mm] \in [/mm] A  mit f(a) = b [mm] \gdw [/mm] f(A) = B


>  
> Aber wie mache ich den Beweis und warum folgt das eine auf
> das andere?

Es  ist f(S) [mm] \subseteq [/mm] S. Nehmen wir an, S habe n Elemente. Wenn f injektiv ist, wieviele Elemente hat dann f(S) ? Jawoll, es hat wieder n Elemente. Kann dann f(S) eine echte Teilmenge von S sein ?  Nö, natürlich nicht. FAZIT: f(S) = S.



>  
> Ich bin hier überfordert, verstehe auch nicht wieso das für
> die Endlichkeit relevant ist!

Sei z.B. S = [mm] \IN [/mm] und f(s) = 2s. Dann ist f injektiv, aber nicht surjektiv


FRED

>  
> Bitte helft mir!  Danke!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]