www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSurjektiv und nicht Injektiv?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Surjektiv und nicht Injektiv?
Surjektiv und nicht Injektiv? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektiv und nicht Injektiv?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Fr 10.02.2006
Autor: alx3400

Hallo,
Das wird wohl erstmal die letzte Frage im LA-Forum sein, schreibe morgen Klausur.

Die Frage: Kann ein Endemorphismus surjektiv, aber nicht injektiv sein?

Ich stelle mir das so vor: Ist die Abbildung nicht injektiv, so ist dim(Kern(f)) größer als 0. Dann muss dim(Bild(f)) kleiner sein als die Dimension des zugrunde liegenden Vektorraums. Dann kann die Abbildung doch nicht mehr surjektiv sein oder?

Wie ist das für Abbildungen f: V [mm] \mapsto [/mm] W ?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Surjektiv und nicht Injektiv?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Fr 10.02.2006
Autor: SEcki


> Die Frage: Kann ein Endemorphismus surjektiv, aber nicht
> injektiv sein?

Sind die Vektorräumeendlich-dimensional oder auch unendlich-dimensional? Für letztere kann es nämlich welche geben ...

> Ich stelle mir das so vor: Ist die Abbildung nicht
> injektiv, so ist dim(Kern(f)) größer als 0. Dann muss
> dim(Bild(f)) kleiner sein als die Dimension des zugrunde
> liegenden Vektorraums. Dann kann die Abbildung doch nicht
> mehr surjektiv sein oder?

Prinzipiell richtig - man setzt halt einfach was man weiss in den Dimensionssatz ein, und erhält dann einen Widerspruch.

> Wie ist das für Abbildungen f: V [mm]\mapsto[/mm] W ?

Da kann es sicher welche geben ... was die Bedingungen an V und w sind (endlich dimensionale V, W!) ergibt wieder der Dimensionssatz.

SEcki

Bezug
                
Bezug
Surjektiv und nicht Injektiv?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Fr 10.02.2006
Autor: alx3400

Danke für die Antwort.

Hatte intuitiv erstmal nur an endlich-dimensionale Verktorräume gedacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]