www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenSurjektivität mittels Induktio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Surjektivität mittels Induktio
Surjektivität mittels Induktio < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektivität mittels Induktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:54 Sa 01.11.2008
Autor: Sissi22

Aufgabe
Sei M:= { [mm] (i,j)\in\IN\times\IN| [/mm] i [mm] \ge [/mm] j } die Menge aller Tupel natürlichen Zahlen (ohne Null).
Zeigen Sie, dass die durch (i,j) [mm] \mapsto j+\bruch{i}{2}(i-1) [/mm] definierte Abbildung von M nach [mm] \IN [/mm] eine Bijektion ist.
(Hinweis: Zeigen Sie die Surjektivität mittels Induktion und die Injektivität durch einen Widerspruchsbeweis.)

Guten Morgen,

leider habe ich hier nicht wirklich eine Ahnung, wie ich hier einen Induktionsbeweis machen soll. Was ist denn die Induktionsvoraussetzung und was die Induktionsbehauptung?? Wenn ich das erstmal wüsste, ich glaube, das würde mir erstmal reichen! Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Surjektivität mittels Induktio: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Sa 01.11.2008
Autor: pelzig

Induktionsvoraussetzung: "Es gibt ein [mm](i,j)\in M[/mm] mit $f(i,j)=n$
Induktionsbehauptung: "Es gibt ein [mm] $(k,l)\in [/mm] M$ mit $f(k,l)=n+1$

Dabei ist $f$ die Abbidlung, deren Bijektivität du zeigen sollst.

Gruß, Robert

Bezug
        
Bezug
Surjektivität mittels Induktio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Sa 01.11.2008
Autor: angela.h.b.


> Sei M:= [mm] {(i,j)\in\IN\times\IN| i \ge j } [/mm] die Menge aller
> Tupel natürlichen Zahlen (ohne Null).

Hallo,

[willkommenmr].

Das stimmt nicht!

Schau Dir die Menge mal richtig an: da sind überhaupt nicht alle Tupel natürlicher Zahlen drin, sondern es ist M [mm] \subseteq \IN [/mm] x [mm] \IN. [/mm]

Schreib Dir mal ein paar Tupel auf, die in M sind - sofern das da oben nicht nur ein Versehen ist.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]