Symmetrie E-Feld, B-Feld < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | (i) Warum folgt aus zylindersymmetrischer Ladungsverteilung [mm] \vec{E}(\vec{r})=E(\rho)\vec{e}_{\rho}.
[/mm]
(ii) Ein Zylinder, der von einem homogenen Strom durchflossen wird, gilt für das Magnetfeld: [mm] \vec{B}(\vec{r})=B(r)\vec{e}_{\phi}. [/mm] Warum? |
Hallo,
zu (i): also Zylindersymmetrie bedeutet doch letztendlich, dass die Ladungsverteilung nur noch von [mm] \rho [/mm] und z abhängt. Wenn ich dann das elektrostatische Potential betrachte, dürfte das doch aber nur noch von [mm] \rho [/mm] abhängen und nicht mehr von z. Es gilt doch [mm] \phi=\int\mbox{d}V'\,\frac{\rho(\vec{r}')}{|\vec{r}'-\vec{r}|}. [/mm] Dann erhalte ich doch noch eine Abhängigkeit von z oder nicht? Wie kommt man dann zu [mm] \vec{E}(\vec{r})=E(\rho)\vec{e}_{\rho}?
[/mm]
Zu (ii): Wenn man mal den Strom in z Richtung fließen lässt, dann gilt für das Vektorpotential [mm] \vec{A}(\vec{r})=A(\vec{r})\vec{e}_{z}. [/mm] Jetzt soll es aus Symmetriegründen keine Abhängigkeit von [mm] \vec{A}(\vec{r}) [/mm] von z und [mm] \varphi [/mm] geben. Die Rotationsinvarianz ist ja klar. Aber wieso gibts jetzt keine Abhängigkeit mehr von der Höhe z? Es ist ja klar, dass die Stromdichte translationsinvariant isr (weil sie homogen sein soll). Man berechnet dann [mm] \vec{A}(\vec{r})=\int d^{3}r'\,\frac{\vec{j}(\vec{r}')}{|\vec{r}'-\vec{r}|}. [/mm] Aber in dem Betrag [mm] |\vec{r}'-\vec{r}| [/mm] gibt es doch dann immer noch eine z Komponenten ungleich null. Also müsste A doch von z abhängen? Kann ja aber nicht sein, bloss warum?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:33 Fr 11.02.2011 | Autor: | leduart |
Hallo
da kein beschränkter zylinder angegeben ist ist er unendlich lang, oder umindest sehr lang im verjältnis zum Radius.
du kannst also jeden punkt des zylinders so behandeln wie einen der in z- richtung auf der symmetrielinie liegt Z=0 für z von -h/2 bis +h/2
gruss leduart
|
|
|
|