www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSymmetrie ganzrat. Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Symmetrie ganzrat. Funktionen
Symmetrie ganzrat. Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie ganzrat. Funktionen: Rechnerischer Beweis - Problem
Status: (Frage) beantwortet Status 
Datum: 13:36 So 05.06.2005
Autor: puebbey

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo :)

Laut Lösungszettel ist die Funktion f mit  f(x)= [mm] (x-1)^3 [/mm] + [mm] 3x^2 [/mm] +1 ungerade und die Funktion g mit g(x)= [mm] (x-x^2)^2 [/mm] weder gerade noch ungerade.

Kann mir jemand für beide Funktionen f(-x) und -f(x) ausführlich aufschreiben? Ich komme nicht auf die Ergebnisse, die Klammern machen mir Probleme.

        
Bezug
Symmetrie ganzrat. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 So 05.06.2005
Autor: informix

Hallo puebbey,
[willkommenmr]

> Hallo :)
>  
> Laut Lösungszettel ist die Funktion f mit  f(x)= [mm](x-1)^3[/mm] +
> [mm]3x^2[/mm] +1 ungerade und die Funktion g mit g(x)= [mm](x-x^2)^2[/mm]
> weder gerade noch ungerade.

>
[guckstduhier] ... MBsymmetrische Funktion  dort findest du alle wichtigen Regeln!

$f(x)= [mm] (x-1)^3 [/mm] + [mm] 3x^2 [/mm] +1$ ist sicher nicht ungerade:
$f(-x)= [mm] (-x-1)^3 [/mm] + [mm] 3(-x)^2 [/mm] +1$ wenn du hier die Klammer berechnest, kommen sowohl gerade als auch ungerade Exponenten für x vor [mm] \Rightarrow [/mm] die Funktion "reagiert" auf das Minuszeichen ungleichmäßig, ist also nicht symmetrisch.

> Kann mir jemand für beide Funktionen f(-x) und -f(x)
> ausführlich aufschreiben? Ich komme nicht auf die
> Ergebnisse, die Klammern machen mir Probleme:

[mm] $(x-1)^3 [/mm] = [mm] x^3 [/mm] - [mm] 3x^2 [/mm] + 3x -1$
Für die Koeffizienten siehe auch []http://de.wikipedia.org/wiki/Pascalsches_Dreieck


Bezug
                
Bezug
Symmetrie ganzrat. Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 So 05.06.2005
Autor: SEcki


> [mm]f(x)= (x-1)^3 + 3x^2 +1[/mm] ist sicher nicht ungerade:

Sehr wohl, da [m]f(x)=x^3+3x=-((-x)^3+3(-x))=-f(-x)[/m] gilt ...

SEcki

Bezug
                        
Bezug
Symmetrie ganzrat. Funktionen: sehr wohl richtig!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 So 05.06.2005
Autor: informix

Hallo SEcki,
> > [mm]f(x)= (x-1)^3 + 3x^2 +1[/mm] ist sicher nicht ungerade:
>  
> Sehr wohl, da [m]f(x)=x^3+3x=-((-x)^3+3(-x))=-f(-x)[/m] gilt ...
>  

wie rechnest du denn hier?! [mm] $(x-1)^3 \ne x^3 [/mm] -1$ !!!
Ich vermute, du kennst die binomischen Formeln?! auch die höheren Potenzen und das Pascalsche Dreieck?

Bezug
                                
Bezug
Symmetrie ganzrat. Funktionen: Immer noch falsch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 So 05.06.2005
Autor: SEcki


> > Sehr wohl, da [m]f(x)=x^3+3x=-((-x)^3+3(-x))=-f(-x)[/m] gilt ...
> wie rechnest du denn hier?!

ich rechne einfach mal aus ... dann heben sich eben die egraden Terme weg - oh Wunder!

> [mm](x-1)^3 \ne x^3 -1[/mm] !!!

Habe ich das behauptet? Nein. Würde, wenn das richtig wäre, damit die Funktion f ungerade sein? Nein. Die Funktion f hört nicht bei [m](x-3)^3[/m] auf. Da kommen noch zwei Terme.

>  Ich vermute, du kennst die binomischen Formeln?! auch die
> höheren Potenzen und das Pascalsche Dreieck?

Sicher. Und zum einen sieht man das sofort im Kopf, zum anderen habe ich zur Kontrolle dasmit Mupad nachgerechnet: du liegst einfach falsch, du hast dich einfach verrechnet ... und bevor wieder ein "wohl richtig kommt", schau erstmal ob sich die geraden Terme nicht wegheben (und das tun sie!)

SEcki

Bezug
                                        
Bezug
Symmetrie ganzrat. Funktionen: sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 So 05.06.2005
Autor: informix


> > > Sehr wohl, da [m]f(x)=x^3+3x=-((-x)^3+3(-x))=-f(-x)[/m] gilt ...
>  > wie rechnest du denn hier?!

>  
> ich rechne einfach mal aus ... dann heben sich eben die
> egraden Terme weg - oh Wunder!
>  
> > [mm](x-1)^3 \ne x^3 -1[/mm] !!!
>  
> Habe ich das behauptet? Nein. Würde, wenn das richtig wäre,
> damit die Funktion f ungerade sein? Nein. Die Funktion f
> hört nicht bei [m](x-3)^3[/m] auf. Da kommen noch zwei Terme.
>  
> >  Ich vermute, du kennst die binomischen Formeln?! auch die

> > höheren Potenzen und das Pascalsche Dreieck?
>
> Sicher. Und zum einen sieht man das sofort im Kopf, zum
> anderen habe ich zur Kontrolle dasmit Mupad nachgerechnet:
> du liegst einfach falsch, du hast dich einfach verrechnet
> ... und bevor wieder ein "wohl richtig kommt", schau
> erstmal ob sich die geraden Terme nicht wegheben (und das
> tun sie!)
>  

[sorry] - ich hatte wohl ein Brett vor'm Kopf.
Danke für die konsequente Nachrechnung.



Bezug
        
Bezug
Symmetrie ganzrat. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 So 05.06.2005
Autor: SEcki


> g mit g(x)= [mm](x-x^2)^2[/mm]
> weder gerade noch ungerade.

Das äußerste Quadratzeichen zeigt doch: wenn überhaupt, ist die Funktion gerade (die höchste Potenz ist immer gerade). Die Nullstellen der Funktion sind aber wohl 1 und 0 - und damit kann das ganze nicht gerade sein, da dann auch bei -1 eine Nullstelle geben müsste. Du siehst: machmal muss man die Klammern gar nicht ausrechnen.

SEcki

Bezug
                
Bezug
Symmetrie ganzrat. Funktionen: Danke...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Mo 13.06.2005
Autor: puebbey

ihr habt mir sehr geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]