www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSystem von Kongruenzen in Z[i]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - System von Kongruenzen in Z[i]
System von Kongruenzen in Z[i] < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

System von Kongruenzen in Z[i]: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:17 Sa 24.07.2010
Autor: congo.hoango

Aufgabe
Gegen ist im euklidischen Ring [mm] \mathbb{Z}[i] [/mm] das System von Kongruenzen:

x [mm] \equiv [/mm] -1 mod 2+5i, x [mm] \equiv [/mm] i mod 1+4i, x [mm] \equiv [/mm] -i mod 2-3i.

Geben Sie alle Lösungen x [mm] \in \mathbb{Z}[i] [/mm] an.

Hallo,

ich habe bisher folgendes gemacht:

[mm] n_1:= [/mm] (1+4i)(2-3i)=13+5i [mm] \Rightarrow N(n_1)= [/mm] 194
[mm] n_2:=(2+5i)(2-3i)= [/mm] 19+4i [mm] \Rightarrow N(n_2)= [/mm] 377
[mm] n_3:=(2+5i)(1+4i)=-18+13i \Rightarrow N(n_3)= [/mm] 493

Mit [mm] r_1=2+5i, r_2= [/mm] 1+4i, [mm] r_3=2-3i, [/mm] folgt:

[mm] N(r_1)= [/mm] 29, [mm] N(r_2)=17, N(r_3)= [/mm] 13

Nun müsste man ja folgende Gleichung lösen können, bzw. das entsprechende [mm] s_i [/mm] und [mm] m_i [/mm] finden:

1= [mm] s_1*29 [/mm] + [mm] m_1*194 [/mm]

usw.

Aber ich weiß nicht wie ich auf die [mm] s_i [/mm] und [mm] m_i [/mm] komme....

Kann mir hier jemand helfen? Wäre echt super!

Vielen Dank schonmal.

Gruß
congo

        
Bezug
System von Kongruenzen in Z[i]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Sa 24.07.2010
Autor: felixf

Hallo!

> Gegen ist im euklidischen Ring [mm]\mathbb{Z}[i][/mm] das System von [/i][/mm]
> [mm][i]Kongruenzen:[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]x [mm]\equiv[/mm] -1 mod 2+5i, x [mm]\equiv[/mm] i mod 1+4i, x [mm]\equiv[/mm] -i mod [/i][/mm]
> [mm][i]2-3i.[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]Geben Sie alle Lösungen x [mm]\in \mathbb{Z}[i][/mm] an.[/i][/mm][/i][/mm]
> [mm][i][mm][i] Hallo,[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]ich habe bisher folgendes gemacht:[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i][mm]n_1:=[/mm] (1+4i)(2-3i)=13+5i [mm]\Rightarrow N(n_1)=[/mm] 194[/i][/mm][/i][/mm]
> [mm][i][mm][i] [mm]n_2:=(2+5i)(2-3i)=[/mm] 19+4i [mm]\Rightarrow N(n_2)=[/mm] 377[/i][/mm][/i][/mm]
> [mm][i][mm][i] [mm]n_3:=(2+5i)(1+4i)=-18+13i \Rightarrow N(n_3)=[/mm] 493[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]Mit [mm]r_1=2+5i, r_2=[/mm] 1+4i, [mm]r_3=2-3i,[/mm] folgt: [/i][/mm][/i][/mm]
> [mm][i][mm][i][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm]N(r_1)=[/mm] 29, [mm]N(r_2)=17, N(r_3)=[/mm] 13[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]Nun müsste man ja folgende Gleichung lösen können, bzw. [/i][/mm][/i][/mm]
> [mm][i][mm][i]das entsprechende [mm]s_i[/mm] und [mm]m_i[/mm] finden:[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]1= [mm]s_1*29[/mm] + [mm]m_1*194[/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]usw.[/i][/mm][/i][/mm]

Wieso willst du nicht [mm]s_1, m_1 \in \IZ[i][/mm] finden mit $1 = [mm] r_1 s_1 [/mm] + [mm] n_1 m_1$? [/mm] Damit wuerdest du auf jeden Fall zum Ziel kommen. Die Normen brauchst du doch nur fuer den Euklidischen Algorithmus, der dir eine Loesung fuer diese Gleichung liefert.

LG Felix


Bezug
                
Bezug
System von Kongruenzen in Z[i]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Sa 24.07.2010
Autor: congo.hoango

Hm....ich habe das einfach so gemacht wie uns das in der Übung vorgemacht wurde...aber letzten Endes suche ich doch auch die [mm] s_i [/mm] und [mm] m_i [/mm] aus der Gleichung.

Wie komme ich denn auf die?

Gruß
congo

Bezug
                        
Bezug
System von Kongruenzen in Z[i]: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Sa 24.07.2010
Autor: felixf

Moin

> Hm....ich habe das einfach so gemacht wie uns das in der
> Übung vorgemacht wurde...aber letzten Endes suche ich doch
> auch die [mm]s_i[/mm] und [mm]m_i[/mm] aus der Gleichung.

Ok...

> Wie komme ich denn auf die?

Mit dem []Erweiterten Euklidischen Algorithmus.

LG Felix


Bezug
                                
Bezug
System von Kongruenzen in Z[i]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 So 25.07.2010
Autor: congo.hoango

Super, 1000 Dank, jetzt habe ich die Aufgabe lösen können.

Gruß
congo

Bezug
                                
Bezug
System von Kongruenzen in Z[i]: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:37 Do 12.08.2010
Autor: duda

ich bin grad dabei diese aufgabe zu berechnen und habe für [mm] (s_{1}, m_{1}) [/mm] = (47, -13) heraus bekommen.
ist die lösung soweit richtig?

Bezug
                                        
Bezug
System von Kongruenzen in Z[i]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Do 12.08.2010
Autor: schachuzipus

Hallo duda,

> ich bin grad dabei diese aufgabe zu berechnen und habe für
> [mm](s_{1}, m_{1})[/mm] = (47, -13) heraus bekommen.
> ist die lösung soweit richtig?

Poste bitte deine Rechnung, dann kann man drüber schauen, aber wieso sollte das jemand komplett selber rechnen, nur um dein Ergebnis zu prüfen?

Also zeige deine Rechnung, dann kann man dir helfen!

Gruß

schachuzipus


Bezug
                                        
Bezug
System von Kongruenzen in Z[i]: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 14.08.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]