www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenTangente/Normale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Tangente/Normale
Tangente/Normale < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente/Normale: Aufgaben zur Tangente/Normale
Status: (Frage) beantwortet Status 
Datum: 15:29 Do 26.11.2009
Autor: panama010

Aufgabe
Gegeben sind die Funktionen f(x) = 5x² - 3x - 6 und g(x) = 3x² - 5x +10

a.) Berechne die Schnittpunkte der Funktionen.
b.) Berechne die Tangentengleichung(en) an den Schnittpunkten.
c.) Bestimme mögliche Schnittwinkel.
d.) Tangenten von f und g im Schnittpunkt im 1. Quadranten bilden zusammen mit der x-Achse ein Dreieck. Bestimme den Flächeninhalt.
e.) Bestimmt die Gleichung der Normalen n f(x) von f(x) an der Stelle x=0. Es existiert eine Normale n g(x) von g(x), die n f(x) orthogonal schneidet. An welcher Stelle muss n g(x) angesetzt werden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich komme mit den Aufgabenstellung nicht wirklich zurecht und verstehe nicht wie ich das errechnen soll.
zu a.) 5x² - 3x - 6 = 3x² - 5x +10
          2x² - 3x - 6 = -5x + 10
          2x² - 3x - 16 = -5x
         0 = 2x² + 2x - 16
         y = 2x² + 2x - 16  /:2
         y = x² + x - 8
pq- Formel:
        x1/2 = - 1/2 +-  [mm] \wurzel{3} [/mm] (1/2)² +8
        x1/2 = - 1/2 +- 2.87
  x01 = 2.37
  x02 = -3.37

zu b.) kabe ich keine Idee, da ich nicht weiß wie ich es berechnen soll.

zu c.) Ich bin jetzt so weit in meinen Überlegungen, dass ich für jede Gleichung jeweils x01 und x02 einsetzen muss und aus dem Ergebnis tangens ziehen muss, damit ich zu den Winkeln komme.

d. und e.) habe ich gar nicht verstanden

limes und die Berechnung mit h haben wir rausgenommen.
Ich bin 10. Klasse Gymnasium.
Vielleicht könnt ihr mir dabei helfen.

        
Bezug
Tangente/Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Do 26.11.2009
Autor: Steffi21

Hallo, [Dateianhang nicht öffentlich]

a)
dein Ansatz ist korrekt, [mm] x_0_1=2,37 [/mm] und [mm] x_0_2=-3,37 [/mm] ebenso, an diesen Stellen schneiden sich also beide Funktionen
b)
es sind vier Tangentengleichungen gesucht, berechne g'(2,37), g'(-3,37), f'(2,37) und f'(-3,37) du hast die Anstiege der Tangenten, zu den Tangenten gehören natürlich auch die Punkte [mm] (x_0_1; f(x_0_1)) [/mm] bzw. [mm] (x_0_2; f(x_0_2)), [/mm] setze die Punkte in die Tangentengleichungen ein, du bekommst n
c)
die Schnittwinkel kannst du berechnen mit [mm] tan(\alpha)=\bruch{m_2-m_1}{1-m_1*m_2} [/mm]
d)
Ansatz ist hier [mm] A=\bruch{1}{2}*g*h, [/mm] die Grundseite bekommst du über die Nullstellen der Tangenten, die Höhe bekommst du mit [mm] f(x_0_1) [/mm]
e)
bestimme die Tangentengleichungen an der Stelle x=0, eine Normale steht dazu senkrecht,
weiterhin ist die Stelle beider Funktionen zu bestimmen, an der die Anstiege gleich sind,

jetzt hast du erst einmal "volles Programm", viel Erfolg

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]