www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangente an einen Kreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Tangente an einen Kreis
Tangente an einen Kreis < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an einen Kreis: Aufg.1 Frage
Status: (Frage) beantwortet Status 
Datum: 17:10 Do 17.11.2005
Autor: Nightwalker12345

Hallo,

habe zwei Fragen, stelle zur erst mal die eine, dann die andere.

also:

Aufg.1

Bestätige, dass p1 auf dem Kreis liegt. Gib für die Tangente an den Kreis im Punkt P1 die Gleichung in der Form ... (sollen wir halt nicht machen,also diese Form " (x-d) x (x1-d) ... )
Überführe sie anschließend in die Normalform.

Aufg.1 a)

x² + 4x + y² + 2y = 20        P1 (-5/3)

Also rechne ich zuerst mal den M.punkt aus und den radius,

x² + 4x + 4x + y² + 2y + 1 = 20 + 4 + 1

M( -2/-1)
r² = 25 folgt also: r= 5

so jetzt kann ich ja die länge der strecke ausrechnen

mit d² = (x2 - x1)² + (y2 - y1)²

dann kommt d= 5 raus

damit hätte ich doch schon den Beweis, dass P1 auf dem Kreis liegt oder?

nun wie fahre ich weiter fort. also was soll ich den jetzt machen???

vielleicht tangentengleichung ausrechnen also:

m von PM = (y-y(klein m )) : (x - xm)

so dass ich dann nachher m = - 4/3
habe dann :     -1: (-4/3) = 3/4

in die selbe gleichung einsetzten also fast  m = y-y1 : x-x1

so dass ich dann   y= 3/4x + 6 3/4 raus habe

ist das alles oder warum muss ich denn jetzt die Tangentengleichung ausrechnen?


danke,
stelle meine zweite, für mich bisschen schwerer, dann wenn diese Frage hoffentlich beantwortet wurde.
also danke

        
Bezug
Tangente an einen Kreis: Alles richtig, aber ...
Status: (Antwort) fertig Status 
Datum: 17:36 Do 17.11.2005
Autor: Roadrunner

Hallo Nightwalker!


> Aufg.1 a)
>  
> x² + 4x + y² + 2y = 20        P1 (-5/3)
> damit hätte ich doch schon den Beweis, dass P1 auf dem
> Kreis liegt oder?

[daumenhoch] Alles richtig, aber zu kompliziert ;-) ...

[mm] $x^2+4x+y^2+2y [/mm] \ = \ 20$     [mm] $\gdw$ $(x+2)^2 [/mm] + [mm] (y+1)^2 [/mm] \ = \ [mm] 5^2$ [/mm]


Warum setzt Du hier nicht einfach die Koordinaten von [mm] $P_1$ [/mm] in die Kreisgleichung ein?

[mm] $(-5+2)^2 [/mm] + [mm] (3+1)^2 [/mm] \ = \ [mm] (-3)^2 [/mm] + [mm] 4^2 [/mm] \ = \ 9+16 \ = \ 25 \ = \ [mm] 5^2$ [/mm] [ok]




> vielleicht tangentengleichung ausrechnen also:

[ok] Genau ...



> so dass ich dann   y= 3/4x + 6 3/4 raus habe
> ist das alles?

[daumenhoch] Alles richtig gemacht ... prima (und hier auch nicht zu umständlich)!


Gruß vom
Roadrunner


Bezug
        
Bezug
Tangente an einen Kreis: Aufg. 2 Frage
Status: (Frage) beantwortet Status 
Datum: 18:06 Do 17.11.2005
Autor: Nightwalker12345

Hallo,

zuerst mal vielen Dank


Halt jetzt habe ich halt eine Frage zur zweiten Aufgabe, wo ich nicht so ganz weiß, wie ich fortfahren soll...

Also:


Bestimme die Punkte des Kreises, in denen die Tangente die angegebene Steigung hat

1) (x+3)² + (y+1)² = 64  ; m=  - 3/4

wie soll ich denn jetzt fortfahren?

Ansatz:

man kann ja die Tangentensteigung bei einer solchen Gleichung wie folgt bestimmen: -  [mm] \bruch{x1 - d}{y1-e} [/mm]

das hätte ja was mit der Steigung zu tun aber wie ich weiter machen soll
fällt mir nicht ein...
wäre nett wenn ihr das mir kurz erläutern würdet oder einen Ansatz geben würdet....



Bezug
                
Bezug
Tangente an einen Kreis: Ansatz
Status: (Antwort) fertig Status 
Datum: 18:22 Do 17.11.2005
Autor: Roadrunner

Hallo Nightwalker!


Der Ansatz über die Steigung ist doch gut ...

Sei $P \ [mm] \left( \ x_P \ \left| \ y_P \ \right)$ der gesuchte Punkt (bzw. die gesuchten Punkte). Dann kennen wir doch die Steigung $m_{MP}$ , da ja gilt: $m_{MP} \ = \ - \bruch{1}{m} \ = \ - \bruch{1}{-\bruch{3}{4}} \ = \ \bruch{4}{3}$ Zudem können wir die Steigung $m_{MP}$ berechnen mit: $m_{MP} \ = \ \bruch{y_P-y_M}{x_P-x_M} \ = \ \bruch{y_P+1}{x_P+3} \ = \ \bruch{4}{3}$ Diese Gleichung kannst Du nun z.B. nach $y_P \ =\ ...$ umstellen und in die gegebene Kreisgleichung einsetzen und anschließend nach $x_P$ auflösen. Gruß vom Roadrunner [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]