Tangente durch den Ursprung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:38 Mo 30.10.2006 | Autor: | antigone |
Aufgabe | Gegeben ist die Funktion f(x)= [mm] 3/2(x+1)^2
[/mm]
An welchem Punkt der Tangente geht die Funktion durch den Nullpunkt? |
Hallo :)
Ich bin so vor gegangen, dass ich erst die f'(x) gebildet habe, wo rauskam:
f'(x)= (-3x-3) / [mm] (x+1^3) [/mm]
Meine Überlegung war, dass man irgendwie mit [mm] f'(x)*x_b [/mm] = f(x) rechnen kann und dann durch Umstellung den gesuchten Punkt [mm] x_b [/mm] rausbekommt.
( Wobei [mm] x_b [/mm] der Berührungspunt der Tangente mit der Kurve ist)
Nun wüsste ich gerne, ob ich auf dem richtigen Weg bin oder mich total verannt habe und ein kleiner Tipp in die richtige Richtung wäre nett, wenn letzteres der Fall sein sollte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vielen Dank schon mal :)
LG
antigone
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:46 Mo 30.10.2006 | Autor: | MarinaS |
HI, du machst dir das so viel zu kompliziert, denk einfacher! Der Nullpunkt hat welche Koordinaten? Verwende die y- Koordinaten hiervon um dein Problem zu lösen, dann bis du auf dem richtigen weg.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:31 Mo 30.10.2006 | Autor: | antigone |
Der Nullpunkt hat die Koordinaten 0/0, aber wie/wo soll ich dann das y=0 verwenden???
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:47 Mo 30.10.2006 | Autor: | MarinaS |
Also , f'(x) hast du ja schon gebildet. Ich glaube aber, das es falsch ist, ich bekomme nämlich folgendes raus.
=> f' (x) = 3 ( x +1 ) = 3x +1
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:03 Mo 30.10.2006 | Autor: | antigone |
Also, auf den Term f'(x) = -3x - 3 / (x+1) bin ich durch die Quotientenregel gekommen:
u'(x)*v(x) - u(x)+v'(x) / [ [mm] v(x)]^2 [/mm]
Habe ich die falsch angewendet? Oder kann man die hier gar nicht anwenden?
|
|
|
|
|
Status: |
(Antwort) fehlerhaft | Datum: | 11:19 Di 31.10.2006 | Autor: | hase-hh |
moin,
also du hast folgende funktion:
f(x) = [mm] \bruch{3}{2*(x+1)^2}
[/mm]
richtig?
dann ist f'
f'(x)= [mm] \bruch{0*2*(x+1)^2 - 3*2*(x+1)*1}{(2(x+1)^2)^2}
[/mm]
f'(x)= [mm] \bruch{-3*2*(x+1)}{4(x+1)^4}
[/mm]
f'(x)= [mm] \bruch{-3}{2(x+1)^3}
[/mm]
meine tangentengleichung lautet allgemein:
y=mx + b
jetzt muss ich die fragestellung verstehen. für eine tangente, die durch den ursprung geht, würde gelten:
0=m*0 + b => b=0
und hätte somit die gleichung y=mx
d.h. an welchem punkt würde die tangente durch den nullpunkt [wenn nullpunkt=ursprung!] gehen: sie würde durch (0/0) gehen.
ist das wirklich gemeint?
oder ist gemeint, an welchem punkt die tangente die y-achse schneidet.
ich sage mal, f(0)= [mm] \bruch{3}{2}, [/mm] d.h. die dazugehörige tangente würde
die y-achse im punkt ( 0 \ [mm] \bruch{3}{2} [/mm] ) schneiden, die steigung wäre
f'(0)= [mm] \bruch{-3}{2*(0+1)^3}=\bruch{-3}{2}, [/mm] somit würde die
tangentengleichung lauten [mm] t_{0}=\bruch{-3}{2}x [/mm] + [mm] \bruch{3}{2}
[/mm]
ggf. präzisiere doch noch mal deine frage!
gruss
wolfgang
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:45 Di 31.10.2006 | Autor: | antigone |
Also, die Aufgabe wurde uns ganz genau so gestellt, wie ich oben angegeben habe.
Ich habe sie so verstanden, dass man den Punkt P von der Kurve bestimmen soll, den die durch den Nullpunkt verlaufenden Tangente berührt.
lg
antigone
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:17 Fr 03.11.2006 | Autor: | antigone |
Wir haben heute die Lösung zu der Aufgabe bekommen, diese lautet:
Die Koordinaten für P sind x=(-1/3) und y=27/8
Im Berührungspunkt soll somit gelten:
[mm] 3/(2(x0+1)^2) [/mm] = (-3) / [mm] (x0*+1)^3) [/mm] *X0
Kann mir jem. die Lösung erklären, bzw. den Rechenweg klarmachen ?
LG
antigone
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:49 Fr 03.11.2006 | Autor: | leduart |
Hallo Antigone
Die Tangente im Punkt x0 hat die Steigung [mm] m=f'(xo)=\bruch{-3}{(x0+1)^3}
[/mm]
Wenn sie ausserdem durch den Nullpunkt gehen soll muss gelten :y0/x0=m
[mm] \bruch{y0}{x0}=\bruch{3}{2*(x0+1)^2*x0}
[/mm]
Damit hast du die Gleichung :
[mm] \bruch{-3}{(x0+1)^3}=\bruch{3}{2*(x0+1)^2*x0}
[/mm]
beide Seiten mit [mm] x0*(xo+1)^2 [/mm] multiplizieren , dann x0 ausrechnen.
x0 in f(x) einsetzen gibt y0
Ich hoff jetzt ist es klarer.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:59 Fr 03.11.2006 | Autor: | antigone |
@leduart
Thx, ich denke, jetzt hab' ich's kapiert :)
antigone
|
|
|
|
|
Status: |
(Korrektur) Korrekturmitteilung | Datum: | 19:41 Fr 03.11.2006 | Autor: | leduart |
Hallo Hase
Du hast dich beim Dfferenzieren vertan, und nen faktor 2 vergessen. Die richtige Ableitung ist:
[mm] f'{x}=\bruch{-3}{(x+1)^3}
[/mm]
das ist ohne Quotientenregel leichter, wenn man [mm] f(x)=\bruch{3}{2}*(x+1)^{-2} [/mm] schreibt. und mit Kettenregel ableitet.
Gruss leduart.
|
|
|
|