www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangente u. Extremwertaufgabe.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Tangente u. Extremwertaufgabe.
Tangente u. Extremwertaufgabe. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente u. Extremwertaufgabe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Do 27.10.2005
Autor: Norman

Gegeben habe ich eine Funktion [mm] f_{t}(x)=(x+t) e^{-x} [/mm]  (t>0)

Ich soll nun die Gleichung der Wendetangente von [mm] f_{t} [/mm] bestimmen.
Diese bildet dann im 1 Quadranten mit den Koordinaten eine Dreiecksfläche B.
Für welchen Wert von t ist der Inhalt Maximal.
[Dateianhang nicht öffentlich]

Den Wendepunkt dieser Funktion habe ich bereits , er lautet [mm] W(2-t|2e^{-2+t}) [/mm]

Nun ist ja die erste Ableitung der Funktion gleich der Anstieg der Tangente.
Also müsste der Anstieg in diesem Fall [mm] e^{-x}(1-t-x) [/mm] sein.
Dann würde die Gleichung so aussehen : [mm] t=(e^{-x}(1-t-x))x+n [/mm] .
Ich muss ja nun den Wendepunkt einsetzten also für [mm] t=2e^{-2+t} [/mm] und für x= 2-t.
Meine Frage, muss ich für alle x die Werte einsetzten oder nur für das x das am Ende der Klammer steht , weil es ja heist t=mx+n?

Zur Extremwertaufgabe , die Formel für den Flächeninhalt ist ja klar , und auch die eine Seite des Dreiecks ist einfach da es ja der Schnittpunkt mit der Y-Achse ist. Aber wie berechne ich die andere Seite und wie zeige ich das es maximal und nicht minimal wird?

Gruß
Norman

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Tangente u. Extremwertaufgabe.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Do 27.10.2005
Autor: Sigrid

Hallo Norman,

> Gegeben habe ich eine Funktion [mm]f_{t}(x)=(x+t) e^{-x}[/mm]  
> (t>0)
>  
> Ich soll nun die Gleichung der Wendetangente von [mm]f_{t}[/mm]
> bestimmen.
>  Diese bildet dann im 1 Quadranten mit den Koordinaten eine
> Dreiecksfläche B.
>  Für welchen Wert von t ist der Inhalt Maximal.
>  
> Den Wendepunkt dieser Funktion habe ich bereits , er lautet
> [mm]W(2-t|2e^{-2+t})[/mm]
>  
> Nun ist ja die erste Ableitung der Funktion gleich der
> Anstieg der Tangente.
>  Also müsste der Anstieg in diesem Fall [mm]e^{-x}(1-t-x)[/mm]
> sein.

Hier solltest du unbedingt schon deinen Wert für die Wendestelle einsetzen, sonst bekommst du genau die Probleme, die du beschrieben hast. Die Steigung der Wendetangente ist:

[mm] f'(2-t) = e^{t-2}(1-t-2+t) = e^{t-2}(-1) = - e^{t-2} [/mm]

also gilt für die Tangentengleichung:

[mm] y = -e^{t-2}x + n [/mm]

Jetzt setzt du für x und y die Koordinaten von W ein und bestimmst n.

>  Dann würde die Gleichung so aussehen :
> [mm]t=(e^{-x}(1-t-x))x+n[/mm] .
>  Ich muss ja nun den Wendepunkt einsetzten also für
> [mm]t=2e^{-2+t}[/mm] und für x= 2-t.
>  Meine Frage, muss ich für alle x die Werte einsetzten oder
> nur für das x das am Ende der Klammer steht , weil es ja
> heist t=mx+n?

Ich denke, jetzt findest du selber die Antwort, oder?

>  
> Zur Extremwertaufgabe , die Formel für den Flächeninhalt
> ist ja klar , und auch die eine Seite des Dreiecks ist
> einfach da es ja der Schnittpunkt mit der Y-Achse ist. Aber
> wie berechne ich die andere Seite

die andere Seite bekommst du über den Schnittpunkt der Wendetangente mit der x-Achse.

> und wie zeige ich das es
> maximal und nicht minimal wird?

Die Flächeninhaltsfunktion ist ja eine Funktion von t. Also nach t ableiten, die Nullstelle der Ableitungsfunktion bestimmen und mit der 2. Ableitung, prüfen, ob es eine Extremum ist und wenn ja, welches.

Gruß
Sigrid

>  
> Gruß
>  Norman

Bezug
                
Bezug
Tangente u. Extremwertaufgabe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 27.10.2005
Autor: Norman

Muss ich nicht mit der 2 Ableitung prüfen ob ein Extremum vorliegt?

Meine Gleichung sieht jetzt so aus A(t) = 2 [mm] e^{-2+t}- \bruch{t}{2}e^{-2+t}. [/mm]

Wie soll ich denn das jetzt ableiten??


Bezug
                        
Bezug
Tangente u. Extremwertaufgabe.: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:09 Do 27.10.2005
Autor: MathePower

Hallo Norman,

> Muss ich nicht mit der 2 Ableitung prüfen ob ein Extremum
> vorliegt?

Ja.

>  
> Meine Gleichung sieht jetzt so aus A(t) = 2 [mm]e^{-2+t}- \bruch{t}{2}e^{-2+t}.[/mm]

Ich hab eine andere Gleichung heraus, die da lautet: A(t)*(4-t)

>  
> Wie soll ich denn das jetzt ableiten??
>  
>  

Wie sonst auch.

Gruß
MathePower

Bezug
                                
Bezug
Tangente u. Extremwertaufgabe.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 27.10.2005
Autor: Norman

Na den Flächeninhalt berechnet man ja mit A=  [mm] \bruch{1}{2} [/mm] a*b.

Die Seite a des Dreiecks ist dann bei mir [mm] a=e^{-2+t}(4-t) [/mm] , die Seite b=4-t , was dann [mm] A(t)=\bruch{1}{2}e^{-2+t} [/mm] (4-t)² ergibt , oder mache ich irgendwas falsch?


Gruß
Norman

Bezug
                                        
Bezug
Tangente u. Extremwertaufgabe.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Do 27.10.2005
Autor: bob05


> was dann [mm]A(t)=\bruch{1}{2}e^{-2+t}[/mm] (4-t)² ergibt

Jetzt ist die Gleichung richtig.

Deine Gleichung im vorherigen Post war jedoch:

> > Meine Gleichung sieht jetzt so aus A(t) = 2 [mm]e^{-2+t}- \bruch{t}{2}e^{-2+t}.[/mm]

= [mm] (2-\bruch{t}{2})e^{-2+t} [/mm] = [mm] \bruch{1}{2}(4-t)e^{-2+t} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]