www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangente und Funktion: FLäche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Tangente und Funktion: FLäche
Tangente und Funktion: FLäche < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente und Funktion: FLäche: wie komme ich an die tangente?
Status: (Frage) beantwortet Status 
Datum: 12:04 Do 24.03.2005
Autor: joimic

hallo
es is t die funktion f(x)= x³-6x gegeben. diese schließt mit der tangente an der stelle x=-1 eine fläche ein.
in der schule haben wir als tangente raus: t(x)=3x+8, die steigung also 3.

ich habe nun nachgerechnet:
x=-1
f'(x)=3x²-6
f'(-1)=3-6=-3 : dies ist also die tangentensteigung m=-3
aber der wert oben ist 3. wer hat nun recht, denn es ergeben sich ja 2 unterschiedliche ergebnisse
meine tangente lautet: t(x)=-3x+2
die tangenten gehen zwar beide durch x=-1, schließen aber unterschiedliche flächen ein.
und von wo bis wo muss ich dann integrieren?
eine grenze ist -1, aber was nehme ich als andere grenze?
danke für hilfe
Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Tangente und Funktion: FLäche: Skizze (edit.)
Status: (Antwort) fertig Status 
Datum: 12:17 Do 24.03.2005
Autor: Loddar

Hallo joimic!


> es is t die funktion f(x)= x³-6x gegeben. diese schließt
> mit der tangente an der stelle x=-1 eine fläche ein.
> in der schule haben wir als tangente raus: t(x)=3x+8, die
> steigung also 3.
>  
> ich habe nun nachgerechnet:
> x=-1
> f'(x)=3x²-6
> f'(-1)=3-6=-3 : dies ist also die tangentensteigung m=-3
> aber der wert oben ist 3. wer hat nun recht, denn es
> ergeben sich ja 2 unterschiedliche ergebnisse
> meine tangente lautet: t(x)=-3x+2

[daumenhoch] Diese Tangentengleichung habe ich auch erhalten.
Hast Du auch die Funktionsvorschrift für $f(x)$ richtig abgeschrieben?


> die tangenten gehen zwar beide durch x=-1, schließen aber
> unterschiedliche flächen ein.
> und von wo bis wo muss ich dann integrieren?
> eine grenze ist -1, aber was nehme ich als andere grenze?

Die andere Grenze ist der Schnittpunkt zwischen Tangente und Funktionsgraph (siehe Skizze).

Diesen Schnittpunkt [mm] $x_S$ [/mm] mußt Du also zunächst ermitteln durch:
[mm] $f(x_S) [/mm] \ = \ [mm] t(x_S)$ $\gdw$ $x_S^3 [/mm] - [mm] 6*x_S [/mm] \ = \ [mm] -3*x_S [/mm] + 2$

Edit: Faktor vor [mm] $\blue{x^3}$ [/mm] korrigiert. Loddar



[Dateianhang nicht öffentlich]



Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Tangente und Funktion: FLäche: schnittstellenberechnung
Status: (Frage) beantwortet Status 
Datum: 12:31 Do 24.03.2005
Autor: joimic

wie krieg ich den 2. schnittpunkt ausgerechnet?
mit polynomdivision schaff ich es nicht und mit ausklammern auch nicht
würdest du mir erklären wie ich es schaffe?

Bezug
                        
Bezug
Tangente und Funktion: FLäche: Ups - Tippfehler!
Status: (Antwort) fertig Status 
Datum: 12:56 Do 24.03.2005
Autor: Loddar

Hallo joimic!


Ich hatte mich in der obigen Antwort vertippt. Es muß natürlich heißen:

[mm] $\red{1}*x_S^3 [/mm] - [mm] 6*x_S [/mm] \ = \ [mm] -3*x_S [/mm] + 2$


[sorry] Kommst Du nun auf die andere Schnittstelle [mm] $x_S$ [/mm] ?

[aufgemerkt] Ansatz über Polynomdivision ...


Gruß
Loddar


Bezug
                                
Bezug
Tangente und Funktion: FLäche: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Do 24.03.2005
Autor: joimic

danke, habe die 2. schnittstelle gefunden
vielen dank für deine hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]