www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTangenten/Differenzierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Tangenten/Differenzierbar
Tangenten/Differenzierbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten/Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Fr 13.01.2012
Autor: theresetom

Aufgabe
Man bestimme die Tangente an der Kurve (x,f(x)) im Punkt [mm] (x_0,f(x_0)): [/mm]
f(x) = [mm] \wurzel{1-x^2}, x_0=1/2,0,-1/2 [/mm]

Def.:
Sei f an [mm] x_0 [/mm] differenzierbar, dann heißt die Gerade mit der Gleichung
y= [mm] f(x_0) [/mm] + [mm] f'(x_0) +*(x-x_0) [/mm] Tangente dan der Stelle [mm] x_0 [/mm]

Das heißt, ich muss vorher die Funktion an den STellen [mm] x_0 [/mm] auf differenzierbarkeit überprüfen muss?


[mm] lim_{h->0} \frac{f(x_0+h)-f(x_0)}{h} [/mm]
[mm] lim_{h->0} \frac{\wurzel{1-(x_0+h)^2}-\wurzel{1-x_0^2}}{h} [/mm]

[mm] x_0=1/2 [/mm]
[mm] lim_{h->0} \frac{\wurzel{1-1/4-h-h^2}-\wurzel{3/4}}{h} [/mm]
[mm] lim_{h->0} \frac{\wurzel{3/4-h-h^2}-\wurzel{3/4}}{h} [/mm]
-- Wie mache ich jetzt weiter?? --
[mm] x_0=0 [/mm]
[mm] lim_{h->0} \frac{\wurzel{1-(h)^2}-\wurzel{1}}{h} [/mm]
--WIe gehts hier weiter=?

        
Bezug
Tangenten/Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 13.01.2012
Autor: schachuzipus

Hallo theresetom,


> Man bestimme die Tangente an der Kurve (x,f(x)) im Punkt
> [mm](x_0,f(x_0)):[/mm]
>  f(x) = [mm]\wurzel{1-x^2}, x_0=1/2,0,-1/2[/mm]
>  Def.:
>  Sei f an [mm]x_0[/mm] differenzierbar, dann heißt die Gerade mit
> der Gleichung
>  y= [mm]f(x_0)[/mm] + [mm]f'(x_0) +*(x-x_0)[/mm] Tangente dan der Stelle [mm]x_0[/mm]

Das hintere "+" ist dir dazwischengerutscht, das muss weg!

>  
> Das heißt, ich muss vorher die Funktion an den STellen [mm]x_0[/mm]
> auf differenzierbarkeit überprüfen muss?

Nee, das ist doch klar, berechne einfach mit der Kettenregel die Ableitung und werte sie an der Stelle [mm] $x_0$ [/mm] aus ...

>  
>
> [mm]lim_{h->0} \frac{f(x_0+h)-f(x_0)}{h}[/mm]
>  [mm]lim_{h->0} \frac{\wurzel{1-(x_0+h)^2}-\wurzel{1-x_0^2}}{h}[/mm]
>  
> [mm]x_0=1/2[/mm]
>  [mm]lim_{h->0} \frac{\wurzel{1-1/4-h-h^2}-\wurzel{3/4}}{h}[/mm]
>  
> [mm]lim_{h->0} \frac{\wurzel{3/4-h-h^2}-\wurzel{3/4}}{h}[/mm]
>   --
> Wie mache ich jetzt weiter?? --

Hier könnte man so erweitern, dass man im Zähler die 3.binomische Formel erhält, also mit [mm] $\sqrt{3/4-h-h^2}\red{+}\sqrt{3/4}$ [/mm]

Das ist ein guter "Trick", um Summen bzw. Differenzen von Wurzeln loszuwerden.

Mache das, dann kannst du schließlich im Zähler $h$ ausklammern, es gegen das $h$ im Nenner kürzen und dann [mm] $h\to [/mm] 0$ gehen lassen.

Aber wie gesagt: Kettenregel und dann in [mm] $x_0$ [/mm] auswerten.

Man muss das Rad ja nicht immer neu erfinden ...

>  [mm]x_0=0[/mm]
>  [mm]lim_{h->0} \frac{\wurzel{1-(h)^2}-\wurzel{1}}{h}[/mm]
>  --WIe
> gehts hier weiter=?

Gruß

schachuzipus


Bezug
                
Bezug
Tangenten/Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Fr 13.01.2012
Autor: theresetom

Okay also muss ich das nicht machen.

Trotzdem:

> $ [mm] lim_{h->0} \frac{\wurzel{3/4-h-h^2}-\wurzel{3/4}}{h} [/mm] $
>   --
> Wie mache ich jetzt weiter?? --

> Hier könnte man so erweitern, dass man im Zähler die 3.binomische Formel erhält, also mit $ [mm] \sqrt{3/4-h-h^2}\red{+}\sqrt{3/4} [/mm] $

> Das ist ein guter "Trick", um Summen bzw. Differenzen von Wurzeln loszuwerden.

[mm] lim_{h->0}\frac{3/4-h-h^2-3/4}{h*(\wurzel{3/4-h-h^2}+\wurzel{3/4})} [/mm]

[mm] lim_{h->0}\frac{h*(-1-h^2)}{h*(\wurzel{3/4-h-h^2}+\wurzel{3/4})} [/mm]


[mm] lim_{h->0}\frac{(-1-h^2)}{(\wurzel{3/4-h-h^2}+\wurzel{3/4})} [/mm]

= -1/(2* [mm] \wurzel{3/4}) [/mm]
Oder ist das jetzt ganz daneben?


Zurück zur eigentlichen Aufgabe:
f'(x)= [mm] \frac{2x}{(1-x^2)^2} [/mm]
f'(1/2) = 9/16

y= $ f(1/2) $ + $ f'(1/2) [mm] \cdot{}(x-1/2) [/mm] $
y= [mm] \wurzel{3/4} [/mm] + 9/16 * (x-1/2)
y= [mm] \wurzel{3/4} [/mm] + 9/16 x - 9/32

So dann ?
Liebe grüße

Bezug
                        
Bezug
Tangenten/Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Fr 13.01.2012
Autor: schachuzipus

Hallo nochmal,


> Okay also muss ich das nicht machen.
>  
> Trotzdem:
>  > [mm]lim_{h->0} \frac{\wurzel{3/4-h-h^2}-\wurzel{3/4}}{h}[/mm]

>  >  
>  --
>  > Wie mache ich jetzt weiter?? --

>  
> > Hier könnte man so erweitern, dass man im Zähler die
> 3.binomische Formel erhält, also mit
> [mm]\sqrt{3/4-h-h^2}\red{+}\sqrt{3/4}[/mm]
>  
> > Das ist ein guter "Trick", um Summen bzw. Differenzen von
> Wurzeln loszuwerden.
>
> [mm]lim_{h->0}\frac{3/4-h-h^2-3/4}{h*(\wurzel{3/4-h-h^2}+\wurzel{3/4})}[/mm]
>
> [mm]lim_{h->0}\frac{h*(-1-h^2)}{h*(\wurzel{3/4-h-h^2}+\wurzel{3/4})}[/mm]
>
>
> [mm]lim_{h->0}\frac{(-1-h^2)}{(\wurzel{3/4-h-h^2}+\wurzel{3/4})}[/mm]
>
> = -1/(2* [mm]\wurzel{3/4})[/mm] [ok]

[mm]=-\frac{1}{\sqrt{3}}[/mm]

>  Oder ist das jetzt ganz daneben?

Nein, das passt!

>  
>
> Zurück zur eigentlichen Aufgabe:
>  f'(x)= [mm]\frac{2x}{(1-x^2)^2}[/mm]

??

Mit [mm]f(x)=\sqrt{1-x^2}[/mm] ist [mm]f'(x)=\underbrace{\frac{1}{2\sqrt{1-x^2}}}_{\text{äußere Abl.}}\cdot{}\left(\underbrace{-2x}_{\text{innere Abl.}}\right)=-\frac{x}{\sqrt{1-x^2}}[/mm]

> f'(1/2) = 9/16

Wie passt das denn zu der oben über den Differenzenquotienten ausgerechneten Ableitung an der Stelle [mm]x_0=1/2[/mm] ?

Gar nicht!

Das sollte dich doch stutzig machen ...

>  
> y= [mm]f(1/2)[/mm] + [mm]f'(1/2) \cdot{}(x-1/2)[/mm]
> y= [mm]\wurzel{3/4}[/mm] + 9/16 * (x-1/2)
>  y= [mm]\wurzel{3/4}[/mm] + 9/16 x - 9/32
>  
> So dann ?

Nä, da musst du nochmal ansetzen, du hattest du schon alles beisammen und hast es dann verschlimmbessert!

>  Liebe grüße

Zurück!

schachuzipus


Bezug
                                
Bezug
Tangenten/Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Fr 13.01.2012
Autor: theresetom

Bin ich blöd^^ Bin grad auf einen banalen fehler gstoßen am anfang ^^

$ [mm] f'(x)=-\frac{x}{\sqrt{1-x^2}} [/mm]
f'(1/2) = [mm] \frac{1/2}{\sqrt{3/4}} [/mm] = [mm] \frac{1}{2\sqrt{3/4}} [/mm]
f(1/2) [mm] =\sqrt{3/4} [/mm]

y= $ f(1/2) $ + $ f'(1/2) [mm] \cdot{}(x-1/2) [/mm] $
y= [mm] \sqrt{3/4} [/mm] + [mm] \frac{1}{2 \sqrt{3/4}} [/mm] * (x-1/2)
y= [mm] \sqrt{3/4} [/mm] + [mm] \frac{x}{2\sqrt{3/4}} [/mm] - [mm] \frac{1}{4\sqrt{3/4}} [/mm]
y= [mm] \frac{1}{2*\sqrt{3/4}} +\frac{x}{2\sqrt{3/4}} [/mm]

Bezug
                                        
Bezug
Tangenten/Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Fr 13.01.2012
Autor: schachuzipus

Hallo nochmal,


> Bin ich blöd^^ Bin grad auf einen banalen fehler gstoßen
> am anfang ^^
>  
> $ [mm]f'(x)=-\frac{x}{\sqrt{1-x^2}}[/mm]
> f'(1/2) = [mm]\frac{1/2}{\sqrt{3/4}}[/mm] = [mm]\frac{1}{2\sqrt{3/4}}[/mm] [notok]

Ich dachte, das hatten wir doch nun schon!!

[mm] $f'(1/2)=\red{-}\frac{1}{\sqrt{3}}$ [/mm]

>  f(1/2) [mm]=\sqrt{3/4}[/mm] [ok]

[mm] $=\frac{\sqrt{3}}{2}$ [/mm]

>  
> y= [mm]f(1/2)[/mm] + [mm]f'(1/2) \cdot{}(x-1/2)[/mm]
> y= [mm]\sqrt{3/4}[/mm] + [mm]\frac{1}{2 \sqrt{3/4}}[/mm] * (x-1/2)
>  y= [mm]\sqrt{3/4}[/mm] + [mm]\frac{x}{2\sqrt{3/4}}[/mm] -  [mm]\frac{1}{4\sqrt{3/4}}[/mm]
>  y= [mm]\frac{1}{2*\sqrt{3/4}} +\frac{x}{2\sqrt{3/4}}[/mm]  

Nein, noch nicht ganz ...

Gruß

schachuzipus


Bezug
                                                
Bezug
Tangenten/Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Fr 13.01.2012
Autor: theresetom

okay.
y= [mm] \wurzel{3}/2 [/mm] + [mm] -x/\wurzel{3} +\frac{1}{2*\wurzel{3}} [/mm]
y= [mm] 2/\wurzel{3} [/mm] - [mm] \frac{x}{\wurzel{3}} [/mm]

Bezug
                                                        
Bezug
Tangenten/Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Fr 13.01.2012
Autor: schachuzipus

Hallo nochmal,


> okay.
>  y= [mm]\wurzel{3}/2[/mm] + [mm]-x/\wurzel{3} +\frac{1}{2*\wurzel{3}}[/mm] [ok]
>  
> y= [mm]2/\wurzel{3}[/mm] - [mm]\frac{x}{\wurzel{3}}[/mm]   [ok]

Jo, passt!

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]