www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangenten Punkte Po ermitteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Tangenten Punkte Po ermitteln
Tangenten Punkte Po ermitteln < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten Punkte Po ermitteln: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:26 Di 04.10.2005
Autor: thomasXS

Hallo Leute!

folgende Aufgabe:

"In welchen Punkten Po erfüllen die Tangenten an Gf die angegebenen Bedingungen?"

[mm] f: x |-> \bruch{1}{2}(x^3-3x); Tangente parallel zur x-Achse [/mm]

Meine Ansätze:
Die Steigungn von f(x) gleich der Steigung der Tangenten setzen

f'(x) = f'(t)

Vorher muss ich noch bei der ersten funktion ableiten:
f'(x) = [mm] 1,5x^2-1,5x [/mm]   ;stimmt das überhaupt?

Allerdings habe ich jetzt ein Problem, wie stelle ich allgemein die Tangente parallel zur x-Achse da?

y = mx +t   ??



Andere Frage: In einer anderen Aufgabe wird verlangt, dass man zeigt, das Gf und Gg sich senkrecht scheiden.

-> Es sind zwei Funktionen gegeben, wie gehe ich bei dieser Aufgabe vor?


Danke für eure Hilfe

Gruß

Thomas


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangenten Punkte Po ermitteln: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:36 Di 04.10.2005
Autor: MathePower

Hallo thomasXS,

> "In welchen Punkten Po erfüllen die Tangenten an Gf die
> angegebenen Bedingungen?"
>  
> [mm] f: x |-> \bruch{1}{2}(x^3-3x); Tangente parallel zur x-Achse[/mm]
>  
> Meine Ansätze:
>  Die Steigungn von f(x) gleich der Steigung der Tangenten
> esetzen
>  
> f'(x) = f'(t)
>  
> Vorher muss ich noch bei der ersten funktion ableiten:
>  f'(x) = [mm]1,5x^2-1,5x[/mm]   ;stimmt das überhaupt?

Es muss heissen: f'(x) = [mm]1,5x^2-1,5[/mm]

>  
> Allerdings habe ich jetzt ein Problem, wie stelle ich
> allgemein die Tangente parallel zur x-Achse da?
>  
> y = mx +t   ??
>  

Tangenten parallel zur x-Achse besitzen die Steigung 0.
Demzufolge lautet die Tangentengleichung y = t.

>
>
> Andere Frage: In einer anderen Aufgabe wird verlangt, dass
> man zeigt, das Gf und Gg sich senkrecht scheiden.

Da gilt dann: [mm]m_{Gf}\;m_{Gg}\;=\;-1[/mm]

Gruß
MathePower

Bezug
                
Bezug
Tangenten Punkte Po ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Di 04.10.2005
Autor: thomasXS

ok, jetzt muss ich aber noch f'(x) = y=t setzen?

1.) Wie schreibe ich das math. korrekt hin? (so wie das jetzt bei mir oben steht, passt das bestimmt nicht)

2.) Wenn ich das jetzt gleich dem y=t setze, wie mache ich dann weiter?
weiter ableiten, nach x auflösen??

Bezug
                        
Bezug
Tangenten Punkte Po ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Di 04.10.2005
Autor: taura

Hallo Thomas!

Du musst f'(x) = 0 setzen, nicht gleich t. Denn: Die Steigung der Tangente soll ja null sein (waagrechte Tangente heißt Steigung gleich null) und die Steigung der Tangente entspricht immer der Steigung der Kurve, die duch f'(x) ausgedrückt wird.

Kommst du damit weiter?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]