www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungTangentengleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Tangentengleichung
Tangentengleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung: Verständnisproblem
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:18 Di 28.12.2004
Autor: silkiway

Ich bin grad am lernen für das Abi, und da ist mir ein Verständnisproblem über den Weg gelaufen...
Im Lambacher Schweizer steht, dass die Tangente an den Kreis [mm] k:(\vec{x}- \vec{m})²=r² [/mm] im Punkt B mit dem Ortsvektor [mm] \vec{b} [/mm] hat die Gleichung [mm] (\vec{x}- \vec{m}) \circ (\vec{b}- \vec{m})=r². [/mm]

Den Beweis dazu habe ich verstanden. Dennoch habe ich das Gefühl, dass wenn ich mit dieser Formel Punkte für X berechne, diese auf dem Kreis und nicht auf der Tangente liegen. Wo ist mein Denkfehler?

Silke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangentengleichung: Antwort(versuch)
Status: (Antwort) fertig Status 
Datum: 14:17 Di 28.12.2004
Autor: e.kandrai

Immer ein wenig schwierig, auf "Wo liegt mein Denkfehler"-Fragen zu antworten... vielleicht schaff ich's ja ;-)

Dieser Vektor [mm]\vec{x}[/mm], der nicht nur bei diesem Thema, sondern immer wieder bei Gleichungen von Geraden, Ebenen,... auftaucht, steht nicht speziell für irgendwas (z.B. "hier geht's irgendwie um Kreise, deswegen liegt dieser Punkt X immer auf dem Kreis"), sondern es ist so zu lesen:
"Bestimme alle Punkte X, deren Ortsvektor [mm]\vec{x}[/mm] die Gleichung ... erfüllt".

Und mal ein Gegenbeispiel, warum das [mm]\vec{x}[/mm] in dieser Gleichung kein Ortsvektor des Kreises sein kann: stell dir folgende Situation vor:

[Dateianhang nicht öffentlich]

Hier steht also der Vektor [mm]\vec{b}-\vec{m}[/mm] senkrecht auf den Vektor [mm]\vec{x}-\vec{m}[/mm], und somit wäre das Skalarprodukt [mm]=0[/mm], aber sicher nicht [mm]=r^2[/mm].

Naja, irgendwie hab ich jetzt das Gefühl, dass du nicht ganz zufrieden sein wirst mit dieser Antwort. Aber ich weiß an diesem Punkt einfach nicht, warum du "dieses Gefühl" hast...
Deswegen lass ich den Status mal auf "nicht vollständig beantwortet".

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Tangentengleichung: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Di 28.12.2004
Autor: e.kandrai

Noch ein Nachtrag zu meinem Satz "warum das [mm]\vec{x}[/mm] kein Ortsvektor des Kreises sein kann": es gibt einen Fall, bei dem das [mm]\vec{x}[/mm] Ortsvektor des Kreises ist, nämlich bei X=B.

Bezug
                
Bezug
Tangentengleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Di 28.12.2004
Autor: silkiway

> Hier steht also der Vektor [mm]\vec{b}-\vec{m}[/mm] senkrecht auf
> den Vektor [mm]\vec{x}-\vec{m}[/mm], und somit wäre das
> Skalarprodukt [mm]=0[/mm], aber sicher nicht [mm]=r^2[/mm].

erst wollte ich hier einen Einspruch erheben; aber jetzt beim Schreiben hab ich dann meinen Denkfehler (glube ich) gefunden.

Mein Gegenargumnet gegen das Zitat oben sollte sein, dass [mm] (\vec{x}-\vec{m})² [/mm] ja die Kreisformel ist und da B ja ein Punkt auf dem Kreis ist, das auch wenn [mm] \vec{b}-\vec{m} [/mm] senkrecht auf den Vektor [mm] \vec{x}-\vec{m} [/mm] steht, das immer noch r² (wegen der Kreisformel) sein müsste.
Und somit habe ich meine Denkfehler gefunden: ich habe bei der Kreisformel [mm] (\vec{x}-\vec{m})\circ(\vec{x}-\vec{m}) [/mm] 2 verschiedene x einsetzen wollen -dies geht natürlich nicht

ich weiß nicht, ob meine Erklärung verständlich ist, aber zumindest glaube ich dass ich meine Denkfehler gefunden zu haben. -jetzt macht die Tangentengleichung (analog auch die für Tangentialebenen) endlich Sinn,
vielen Dank für die Hilfe, mir sind die Augen geöffnet ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]