www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenTangentengleichung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Tangentengleichung bestimmen
Tangentengleichung bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Mo 01.05.2006
Autor: Mabi

Aufgabe
f(x)=1/3 [mm] x^3-2ax [/mm]

Hallo!
Ich brauch nochmal eure Hilfe...
Also, die Aufgabe lautet: "Die Tangente im Hochpunkt am Graphen von f(x) schneidet diesen Graphen in einem weiteren Punkt S. Bestimme die Koordinaten von S." Der Hochpunkt von f(x) ist H(-2/  [mm] 16\3) [/mm] <-- sechzehn drittel und nicht 16

Die Tangentenform lautet ja t(x)=mx+b, dh ich kann doch durch die erste Ableitung an der Stelle -2 die Steigung m der Tangenten ausrechnen und durch einsetzen der Hochpunktkoordinaten den y-Achsenabschnitt b berechnen, oder?

Meine Tangentengleichung würde dann [mm] t(x)=4\3 [/mm] (vier drittel und nicht 4) lauten. Aber wenn ich damit weiterrechne, bekomme ich nichts vernünftiges raus... Kann mir jemand von euch helfen?

Mfg, Mabi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tangentengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Mo 01.05.2006
Autor: hase-hh

moin,

im prinzip genau so. doch zunächst eine frage, wie lautet deine funktion?


[mm] f(x)=1/3x^3 [/mm] - 2ax   beschreibt ja eine funktionsschar, das wäre ja auch nicht weiter tragisch, allerdings müßte ich dann das a selnbstverständlich mit berücksichtigen.


[mm] f'(x)=x^2 [/mm] -2a

0 = [mm] x^2 [/mm] - 2a

x1,2 = [mm] \pm \wurzel{2a} [/mm]

usw.

gruss
wolfgang




Bezug
                
Bezug
Tangentengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mo 01.05.2006
Autor: Mabi

Oh, tut mir Leid... Hab die Aufgabe falsch abgetippt... Es handelte sich nämlich um eine Funktionenschar fa(x), aber hier geht es um die konkrete funktion f2(x), Also lautet die Funktionsvorschrift dann: [mm] f(x)=1/3x^3-4x [/mm]

Sorry, bin in der zeile verrutscht...


Bezug
                        
Bezug
Tangentengleichung bestimmen: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Mo 01.05.2006
Autor: Desiderius

Tach! Das ist mein erster Post also bitte nicht böse sein, wenn ich was falsch mache.

Also erstens. Die Tangentengleichung ist doch x= [mm] \bruch{16}{3} [/mm] und nicht  [mm] \bruch{4}{3}, [/mm] wie du gesagt hast.
Da man den weiteren Schnittpunkt dann nur angeben muss und nicht ausrechnen muss, würde ich nun folgende Funktion in den Taschenrechner eingeben f(x)= [mm] \bruch{1}{3}x^{3}-4x- \bruch{16}{3} [/mm] und würde dann einfach nach einer einer Nullstelle suchen. Die dann bei x=4 liegt.
Ich wüsste nicht wie man das genau berechnen könnte, aber da ja auch nur verlangt wird, dass man diesen Punkt ermittelt, müsste das meiner Meinung nach reichen.

Ich hoffe ich konnte helfen.

mfg

Bezug
                                
Bezug
Tangentengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 01.05.2006
Autor: hase-hh

ok,

jetzt macht die aufgabe sinn.

y=mx + b  

m=f'(-2)=0 (logisch!)

f(-2)=y=16/3  => b= 16/3 =>

y= 16/3


Schnittpunktberechung

f(x)=y

[mm] (1/3)x^3 [/mm] - 4x = 16/3  

[mm] x^3 [/mm] - 12x = 16

eine Lsg  x=-2  (s.o.)
eine Lsg x=-4  

gruss
wolfgang









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]