www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTangentialebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Tangentialebene
Tangentialebene < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 So 21.11.2010
Autor: valoo

Aufgabe
Bestimmen Sie die Tangentialebene des Ellipsoids
[mm] \{\vektor{x\\y\\z}|\bruch{x^{2}}{a^{2}}+\bruch{y^{2}}{b^{2}}+\bruch{z^{2}}{c^{2}}=3\} [/mm] im Punkt [mm] \vektor{a\\b\\c} [/mm]

Hallo!

Ich habe absolut keine Ahnung, wie ich an diese Aufgabe richtig rangehe, allerdings hab ich bei wikipedia nachgeguckt und herausgefunden, dass die Tangentialebene wohl gegeben ist durch die Gleichung
[mm] \bruch{x}{a}+\bruch{y}{b}+\bruch{z}{c}=3 [/mm]

Die Frage ist jetzt aber, wie man diese Aufgabe vernünftig angeht. In der Vorlesung hatten wir noch nie sowas, da ist noch nicht einmal das Wort Tangentialebene gefallen. Aber das ist ja nur ein 2D-Tangentialraum, wie ich herausgefunden habe. Aber auch hatten wir keinerlei Beispiele, wie man einen Tangentialraum überhaupt bestimmt.

        
Bezug
Tangentialebene: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 So 21.11.2010
Autor: MontBlanc

Hallo,

bestimme eine Normale zum Ellipsoid mittels [mm] \nabla\phi [/mm] mit [mm] \phi=\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}-3. [/mm]

Dann ist die Ebene gegeben durch [mm] \left[x-\vektor{a \\ b \\ c}\right]\cdot\nabla\phi|_{(a,b,c)}=0 [/mm]

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]