www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTangentialraum Bsp.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Tangentialraum Bsp.
Tangentialraum Bsp. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialraum Bsp.: Idee
Status: (Frage) überfällig Status 
Datum: 16:21 So 05.12.2010
Autor: musesician

Aufgabe
Es seien R > r > 0 und c : [mm] \IR \to \IR^2 [/mm] sei die Kurve mit
c(t) := (R+r cos (t), R+r sin (t))
Die zu [mm] c [/mm] gehörige Rotationsfläche ist der sogenannte (Rotations)torus.

a) Bestimmen Sie den Tangentialraum des Torus an den Punkten [mm] p [/mm] mit [mm] p \in \{(R+r,0,0),(R,0,r),(R-r,0,0)\} [/mm].

b) Zeigen Sie, dass für die ersten beiden p jeweils eine Seite der Ebene [mm] \{p\} + T_p f [/mm] existiert, die keine Punkte des Torus bzw. der Menge [mm]f(\IR^2) [/mm] enthält. Zeigen Sie weiterhin, dass für [mm]p = (R-r,0,0) [/mm] auf beiden Seiten von [mm] \{p\}+T_p f [/mm] Punkte von [mm] f(\IR^2) [/mm] existieren.

c) Bestimmen Sie die Menge [mm] ({p\} + T_p f) \cap f(\IR^2) [/mm] in den ersten beiden Fällen explizit und zeigen Sie, dass sie im dritten Fall unendlich viele Elemente hat.

Also der Tangentialraum einer Fläche ist definiert als:

[mm] (df)_{(x_1,x_2)} (\IR^2) = span (\bruch{\delta f}{\delta x_1},\bruch{\delta f}{\delta x_2}) = \{\lambda_1 \bruch{\delta f}{\delta x_1} + \lambda_2 \bruch{\delta f}{\delta x_2} \; | \; \lambda_1, \lambda_2 \in \IR\} = T_{(x_1,x_2)} f. [/mm]

zu a) (ich bin schon froh wenn ich diesen Teil erstmal habe^^)
Heißt [mm] (df)_{(x_1,x_2)} (\IR^2) [/mm] dass ich einfach nur die Ableitungsmatrix von f aufstellen muss
(also mit den partiellen Ableitungen von [mm] x_1 [/mm] und [mm] x_2 [/mm], was ist mit [mm] x_3 [/mm])?
Ich verstehe nicht ganz wie ich jetzt die Punkte mit drei Koordinaten auf diese
Definition loslassen soll, die ja nur für 2 ([mm] x_1,x_2 [/mm]) definiert ist.
Das Problem ist, dass wir auch noch kein Beispiel gerechnet haben.
Kann mir jemand beim Verstehen der Definition helfen?

Das übliche Problem an der Uni halt. Immer vom Allgemeinen (Definition) zum
Spezifischen (Beispiel). Dabei lernt man viel besser, wenn es umgekehrt angegangen wird -.-

mfg musesician

        
Bezug
Tangentialraum Bsp.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 07.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]