Taylor und Restglied < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] T_1(x,4) [/mm] das Taylorpolynom 1. Ordnung um [mm] x_0=4 [/mm] von g(x) = [mm] (ln(x-1))^{-2}.
[/mm]
Weisen Sie folgende Ungleichung für x [mm] \ge [/mm] 1+ e nach:
|g(x) - [mm] T_1(x,4) [/mm] | [mm] \le \frac{3}{5} (x-4)^2 [/mm] |
Hi,
ich bin soweit das ich weiß, dass ich die Ungleichung durch Abschätzen der Restgliedes nach Lagrange kriege. Dafür brauche ich die 2. Ableitung von g , die lautet: [mm] \frac{6}{ln^4(x-1)(x-1)^2} [/mm] + [mm] \frac{2}{ln^3(x-1)(x-1)^2} [/mm] somit habe ich:
x [mm] \ge [/mm] 1+ e => [mm] \exists \mu \in [/mm] ]1+e, 4[
|g(x) - [mm] T_1(x,4) [/mm] | = [mm] R_1(x,4) [/mm] = [mm] (\frac{6}{ln^4(\mu-1)(\mu-1)^2} [/mm] + [mm] \frac{2}{ln^3(\mu-1)(\mu-1)^2})\frac{(x-4)^2}{2!}
[/mm]
wegen [mm] \mu \in [/mm] ]1+e, 4[ kann ich es nach oben abschätzen :
[mm] (\frac{6}{ln^4(\mu-1)(\mu-1)^2} [/mm] + [mm] \frac{2}{ln^3(\mu-1)(\mu-1)^2})\frac{(x-4)^2}{2!} \le (\frac{6}{ln^4(e)(e)^2} [/mm] + [mm] \frac{2}{ln^3(e)(e)^2})\frac{(x-4)^2}{2!} [/mm] /not= [mm] \frac{3}{5} (x-4)^2
[/mm]
Weiß jemand wo ich einen Fehler gemacht habe?
Snafu
|
|
|
|
Huhu,
du hast den letzten Schritt vergessen....
Es gilt:
[mm] (\frac{6}{ln^4(e)(e)^2} [/mm] + [mm] \frac{2}{ln^3(e)(e)^2})\frac{(x-4)^2}{2!}$ [/mm]
$= [mm] \bruch{8}{2!e^2}(x-4)^2 \le \bruch{3}{5}(x-4)^2$
[/mm]
MFG,
Gono.
|
|
|
|
|
Hallo,
ich habe nun die Aufgabe noch mal vom Anfang an durchgerechnet und nun schaffe ich zu zeigen dass
| g(x) [mm] -T_1(x,4)| [/mm] < [mm] \frac{3}{5} (x-4)^2 [/mm] gilt, aber nicht dass | g(x) [mm] -T_1(x,4)| \le \frac{3}{5} (x-4)^2 [/mm] gilt.
Nach der 2. Ableitung von g''(x) = [mm] \frac{6}{ln^4(x-1)(x-1)^2} [/mm] + [mm] \frac{2}{ln^3(x-1)(x-1)^2} [/mm] erhält man für das Restglied nach Lagrange [mm] R_1(x,4) [/mm] = [mm] (\frac{6}{ln^4(x-1)(x-1)^2} [/mm] + [mm] \frac{2}{ln^3(x-1)(x-1)^2}) \frac{(x-4)^2}{2!} [/mm]
Nun muss man die Fälle x = 4 , [mm] x\in [/mm] [1+e,4[ , [mm] x\in [/mm] ]4, [mm] \infty[ [/mm] anschauen:
x=4:
|g(4) - [mm] T_1(4,4)| [/mm] = 0 [mm] \le \frac{3}{5} (4-4)^2 [/mm]
[mm] x\in [/mm] [1+e,4[:
[mm] \exists \mu \in [/mm] ]x,4[ : |g(x) - [mm] T_1(x,4)| [/mm] = | [mm] R_1(x,4)| [/mm] = [mm] (\frac{6}{ln^4(\mu-1)(\mu-1)^2} [/mm] + [mm] \frac{2}{ln^3(\mu-1)(\mu-1)^2}) \frac{(x-4)^2}{2!} \le \frac{4}{e^2} (x-4)^2 [/mm] < [mm] \frac{3}{5} (x-4)^2 [/mm]
[mm] x\in [/mm] ]4, [mm] \infty[: [/mm]
[mm] \exists \mu \in [/mm] ]4,x[ : |g(x) - [mm] T_1(x,4)| [/mm] = | [mm] R_1(x,4)| [/mm] = [mm] (\frac{6}{ln^4(\mu-1)(\mu-1)^2} [/mm] + [mm] \frac{2}{ln^3(\mu-1)(\mu-1)^2}) \frac{(x-4)^2}{2!} \le (\frac{6}{ln^4(3)(3)^2} [/mm] + [mm] \frac{2}{ln^3(3)(3)^2}) \frac{(x-4)^2}{2!} [/mm] < [mm] \frac{3}{5} (x-4)^2 [/mm]
wie zeige ich [mm] (\frac{6}{ln^4(\mu-1)(\mu-1)^2} [/mm] + [mm] \frac{2}{ln^3(\mu-1)(\mu-1)^2}) \frac{(x-4)^2}{2!} [/mm] = [mm] \frac{3}{5} (x-4)^2 [/mm] ???
Snafu
|
|
|
|
|
Huhu,
"<" impliziert [mm] "\le".
[/mm]
D.h. gilt $a < b$ gilt insbesondere $a [mm] \le [/mm] b$, da gibt es nix zu zeigen.
edit: Allerdings gilt am Entwicklungspunkt natürlich Gleichheit
MFG,
Gono.
|
|
|
|
|
Hi,
ja aber wenn ich a<b , so kann a nie gleich b sein. Bei [mm] a\le [/mm] b aber schon. Bei meiner Aufgabe würde ja " [mm] <\frac{3}{5} (x-4)^2 [/mm] " sagen, dass das Restglied nie den Wert [mm] \frac{3}{5} (x-4)^2 [/mm] erreichen kann, bei [mm] "\le" [/mm] gibt es aber die Möglichkeit, dass das Restglied = [mm] \frac{3}{5} (x-4)^2 [/mm] ist.
Mich wundert es, dass ich [mm] "\le" [/mm] zeigen soll, obwohl strickt < gilt?
Snafu
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Fr 18.06.2010 | Autor: | Marcel |
Hallo,
> Hi,
>
> ja aber wenn ich a<b , so kann a nie gleich b sein. Bei
> [mm]a\le[/mm] b aber schon. Bei meiner Aufgabe würde ja "
> [mm]<\frac{3}{5} (x-4)^2[/mm] " sagen, dass das Restglied nie den
> Wert [mm]\frac{3}{5} (x-4)^2[/mm] erreichen kann, bei [mm]"\le"[/mm] gibt es
> aber die Möglichkeit, dass das Restglied = [mm]\frac{3}{5} (x-4)^2[/mm]
> ist.
> Mich wundert es, dass ich [mm]"\le"[/mm] zeigen soll, obwohl strickt
> < gilt?
das macht doch nichts. Es wird hier doch sicher eh darum gehen, dass man
[mm] $$|g(x)-T_1(x,4)| \to 0\;\;(x \to x_0=4)$$
[/mm]
und damit
[mm] $$g(x)-T_1(x,4) \to 0\;\;(x \to x_0=4)$$
[/mm]
folgern kann. Und das geht sowohl, wenn in der zu zeigenden Ungleichung [mm] $\le$ [/mm] oder aber die stärkere Bedingung mit [mm] $<\,$ [/mm] steht.
Es gilt nämlich:
Ist für jedes [mm] $n\,$ [/mm] die Ungleichungskette
$$0 [mm] \le |a_n| \le b_n$$
[/mm]
mit einer Nullfolge [mm] $(b_n)_n$ [/mm] gegeben (insbesondere beinhaltet diese Ungleichungskette [mm] $b_n \ge [/mm] 0$ für jedes [mm] $n\,$), [/mm] so folgt [mm] $a_n \to 0\,.$
[/mm]
Wenn man nun sogar
$$0 [mm] \le |a_n| [/mm] < [mm] b_n$$
[/mm]
oder sogar
$$0 < [mm] |a_n| [/mm] < [mm] b_n$$
[/mm]
für jedes [mm] $n\,$ [/mm] beweist, so folgt (aus egal, welche der letzten beiden Ungleichungsketten man betrachtet) insbesondere
$$0 [mm] \le |a_n| \le b_n$$
[/mm]
für jedes [mm] $n\,$ [/mm] und damit auch [mm] $a_n \to 0\,.$
[/mm]
Jede dieser Ungleichungskette (welche dann für jedes [mm] $n\,$ [/mm] gilt) ist hinreichend dafür, dass [mm] $a_n \to 0\,.$ [/mm]
Zum Beispiel:
Es gilt
$$0 < [mm] 1/n^2 [/mm] < 2/n$$
für jedes $n [mm] \in \IN\,.$ [/mm] Wenn wir aber nur
[mm] $$1/n^2 \to 0\;\;(n \to \infty)$$
[/mm]
begründen wollen, reicht es uns vollkommen aus, wenn wir
$$0 [mm] \le 1/n^2 \le [/mm] 2/n$$
beweisen.
Wenn wir uns aber die Mühe gemacht hätten, sowohl
$$0 [mm] \le 1/n^2 \le [/mm] 2/n$$
zu beweisen als auch zu begründen, dass stets $0 [mm] \not=1/n^2$ [/mm] ist (was trivial ist) und auch stets [mm] $1/n^2 \not=2/n$ [/mm] ist (was genau dann der Fall ist, wenn [mm] $n^2 \not=n/2$ [/mm] ist, was aber wegen $n [mm] \in \IN$ [/mm] eh stets gilt, da dann [mm] $n^2 \in \IN$ [/mm] und $n/2 [mm] \not\in \IN$), [/mm] so hätten wir sogar die stärkere Ungleichungskette
$$0 < [mm] 1/n^2 [/mm] < 2/n$$
begründet. Wir hätten dies aber gar nicht benötigt, um [mm] $1/n^2 \to [/mm] 0$ ($n [mm] \to \infty$) [/mm] einzusehen. (Ich gehe davon aus, dass bekannt ist, dass $1/n [mm] \to [/mm] 0$ und wie man damit leicht erhält, dass auch $2/n [mm] \to [/mm] 0$ ($n [mm] \to \infty$).)
[/mm]
Um das ganze noch ein wenig einfacher zu sagen:
Wenn Du $x [mm] \le [/mm] 5$ benötigst, so hast Du ja zu zeigen, dass [mm] $x=5\,$ [/mm] oder aber [mm] $\,x [/mm] < [mm] 5\,$ [/mm] gilt (man kann hier sogar anstatt "oder" ein "entweder oder" verwenden, da nie gleichzeitig [mm] $x<5\,$ [/mm] und [mm] $x=5\,$ [/mm] gelten kann).
Wenn Du das mit einer Teilmengenbeziehung verdeutlicht haben willst:
Wenn Du $x [mm] \in ]-\infty,5]$ [/mm] beweisen willst und nun $x [mm] \in ]-\infty,5[$ [/mm] beweist, so hast Du auch schon $x [mm] \in ]-\infty,5]$ [/mm] bewiesen, da
[mm] $$]-\infty,5[ \;\;\subseteq \;\;]-\infty,5]$$
[/mm]
gilt.
Beste Grüße,
Marcel
|
|
|
|
|
Hi,
ok verstehe, jedoch geht die Aufgabe nicht darum zu zeigen
[mm] \limes_{x\rightarrow x_0 = 4} [/mm] f(x) - [mm] T_1(x,4) [/mm] = 0, sondern darum wirklich zu zeigen, dass die Ungleichung | f(x) - [mm] T_1(x,4)| \le \frac{3}{5} (x-4)^2 [/mm] gilt. Und bis jetzt habe ich nur gezeigt, dass | f(x) - [mm] T_1(x,4)|< \frac{3}{5} (x-4)^2 [/mm] gilt, und somit nicht gezeigt das | f(x) - [mm] T_1(x,4)|= \frac{3}{5} (x-4)^2 [/mm] möglich ist.
Snafu
|
|
|
|
|
Ok, nochmal:
1.) Setze $x=4$ und du hast deine Gleichheit.
2.) Nur weil da steht, dass du [mm] \le [/mm] zeigen sollst, muss "=" gar nicht immer eintreten! Oftmals soll man [mm] \le [/mm] nur zeigen, weil es schwächer ist als echt kleiner. D.h. es ist einfacher zu zeigen, dass [mm] \le [/mm] gilt und das meistens auch ausreicht.
Bspw gilt [mm] $3\le [/mm] 4$ offensichtlich, wann gilt Gleichheit?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:24 Fr 18.06.2010 | Autor: | Marcel |
Hallo,
> Hi,
>
> ok verstehe, jedoch geht die Aufgabe nicht darum zu zeigen
> [mm]\limes_{x\rightarrow x_0 = 4}[/mm] f(x) - [mm]T_1(x,4)[/mm] = 0, sondern
> darum wirklich zu zeigen, dass die Ungleichung | f(x) -
> [mm]T_1(x,4)| \le \frac{3}{5} (x-4)^2[/mm] gilt. Und bis jetzt habe
> ich nur gezeigt, dass | f(x) - [mm]T_1(x,4)|< \frac{3}{5} (x-4)^2[/mm]
> gilt, und somit nicht gezeigt das | f(x) - [mm]T_1(x,4)|= \frac{3}{5} (x-4)^2[/mm]
> möglich ist.
nur zur Ergänzung:
Wenn es Dir gelungen wäre, die Ungleichung mit [mm] $<\,$ [/mm] zu beweisen, so hättest Du auch [mm] $\le$ [/mm] bewiesen. Allerdings wird Dir dies nicht gelingen, da in der Aufgabe $x > [mm] 1+e\,$ [/mm] steht und damit [mm] $x=4\,$ [/mm] möglich ist, und es daher den Fall der Gleichheit gibt.
Du bringst hier anscheinend etwas durcheinander, vielleicht wegen gewissen Beweisstrategien, die Dir mal begegnet sind:
1.)
Wenn Du z.B. $f(x) < r$ für alle [mm] $x\,$ [/mm] zeigen solltest, dann kannst Du das durchaus so tun, dass Du
$$f(x) [mm] \le [/mm] r [mm] \text{ für alle }x$$
[/mm]
beweist und danach dann nachweist, dass [mm] $f(x_0)=r\,$ [/mm] für kein [mm] $x_0$ [/mm] möglich ist.
2.)
Wenn irgendwo steht, dass $f(x) [mm] \le [/mm] r$ für alle [mm] $x\,$ [/mm] gilt, und man dies nicht zu $f(x) < [mm] r\,$ [/mm] für alle [mm] $x\,$ [/mm] verschärfen kann, dann hast Du wirklich zu zeigen, dass es auch ein [mm] $x_0$ [/mm] mit [mm] $f(x_0)=r$ [/mm] gibt.
Wenn aber irgendwo einfach nur $f(x) [mm] \le [/mm] r$ für alle [mm] $x\,$ [/mm] zu beweisen ist, und man $f(x) < [mm] r\,$ [/mm] für jedes [mm] $x\,$ [/mm] bewiesen hat, so gilt:
$$f(x) < r [mm] \text{ für alle }x$$
[/mm]
[mm] $$\Rightarrow [/mm] (f(x) < r [mm] \text{ oder }f(x)=r) \text{ für alle x}$$
[/mm]
[mm] $$\Rightarrow [/mm] f(x) [mm] \le [/mm] r [mm] \text{ für alle }x\,. [/mm] $$
Ein wenig wichtig ist, dass in der zweiten Zeile dieser Folgerung
$$(f(x) < r [mm] \text{ oder }f(x)=r) \text{ für alle }x$$
[/mm]
steht, was logisch was vollkommen anderes als
$$(f(x) < r [mm] \text{ für alle }x) \text{ oder }(f(x)=r \text{ für alle }x)$$
[/mm]
ist.
Beste Grüße,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:37 Fr 18.06.2010 | Autor: | SnafuBernd |
Hallo,
ok jetzt habt ihr mich überzeugt! :)
Danke!
Snafu
|
|
|
|