www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesTaylorentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Taylorentwicklung
Taylorentwicklung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mi 16.01.2013
Autor: Anna-Lyse

Hallo,

ich stehe gerade auf dem Schlauch :(
Gegeben ist eine Funktion
[mm] f(x_1 [/mm] + [mm] \varepsilon_1, x_2 [/mm] + [mm] \varepsilon_2) [/mm]

Wie kommt man auf diesen Schritt?
[mm] f(x_1 [/mm] + [mm] \varepsilon_1, x_2 [/mm] + [mm] \varepsilon_2) [/mm] = [mm] f(x_1,x_2) [/mm] + [mm] \varepsilon_1 f_{x_1}(x_1,x_2) [/mm] + [mm] \varepsilon_2 f_{x_2}(x_1,x_2) [/mm] + ...

Danke!
Anna

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Mi 16.01.2013
Autor: MathePower

Hallo Anna-Lyse,

> Hallo,
>  
> ich stehe gerade auf dem Schlauch :(
>  Gegeben ist eine Funktion
>  [mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm]
>  
> Wie kommt man auf diesen Schritt?
>  [mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm] = [mm]f(x_1,x_2)[/mm] +
> [mm]\varepsilon_1 f_{x_1}(x_1,x_2)[/mm] + [mm]\varepsilon_2 f_{x_2}(x_1,x_2)[/mm]
> + ...
>


Bilde die Tangentialebene im Punkt [mm]\pmat{x_{1} \\ x_{2} \\ f\left(x_{1},x_{2}\right)}[/mm]

Setze dann den Punkt [mm]\pmat{x_{1} +\varepsilon_{1}\\ x_{2}+\varepsilon_{2} \\ f\left(x_{1}+\varepsilon_{1},x_{2}+\varepsilon_{2}\right)}[/mm] ein.

Dafür ist die ermittelte Tangentialebene eine Näherung.


> Danke!
>  Anna


Gruss
MathePower

Bezug
        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mi 16.01.2013
Autor: notinX

Hallo,

> Hallo,
>  
> ich stehe gerade auf dem Schlauch :(
>  Gegeben ist eine Funktion
>  [mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm]
>  
> Wie kommt man auf diesen Schritt?
>  [mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm] = [mm]f(x_1,x_2)[/mm] +
> [mm]\varepsilon_1 f_{x_1}(x_1,x_2)[/mm] + [mm]\varepsilon_2 f_{x_2}(x_1,x_2)[/mm]
> + ...

das sieht mir stark nach einer Taylorentwicklung aus.

>
> Danke!
>  Anna

Gruß,

notinX

Bezug
        
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Fr 18.01.2013
Autor: Anna-Lyse

Hallo MathePower und notinX,

vielen Dank für Eure Antworten. Ja, Taylorentwicklung war mir klar. Aber irgendwie habe ich gerade meine Probleme mit Taylor.
Also
[mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm] = [mm]f(x_1,x_2)[/mm] +  [mm]\varepsilon_1 f_{x_1}(x_1,x_2)[/mm] + [mm]\varepsilon_2 f_{x_2}(x_1,x_2)[/mm]  + ...
ist so, weil hiermit die Taylorentwicklung bis zur ersten Ordnung aufgeschrieben ist. Die Punkte am Ende des letzten Additionszeichen würden dann die 2. Ordnung folgen lassen, richtig?

D.h. konkret würde doch gelten aufgrund der Taylorformel:
[mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm] = [mm]f(x_1,x_2)[/mm] *1 * 1 +  [mm]1 * \varepsilon_1 f_{x_1}(x_1,x_2)[/mm] + [mm]1 * \varepsilon_2 f_{x_2}(x_1,x_2)[/mm]  + ...

oder (was ja genau dem o.g. entspricht)?
Wenn ich die "..." mal fortsetze, würde dann

+ [mm] \bruch{1}{2}* \varepsilon_1^2 f_{x_1 x_1}(x_1,x_2)[/mm] + [mm]\bruch{1}{2} * \varepsilon_2^2 f_{x_2 x_2}(x_1,x_2)[/mm]  + [mm] 2\varepsilon_1 \varepsilon_2 [/mm] * [mm] \bruch{1}{2} f_{x_1 x_2} [/mm] + ...

folgen, richtig?

Danke,
Anna

Bezug
                
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Fr 18.01.2013
Autor: MathePower

Hallo Anna-Lyse,

> Hallo MathePower und notinX,
>  
> vielen Dank für Eure Antworten. Ja, Taylorentwicklung war
> mir klar. Aber irgendwie habe ich gerade meine Probleme mit
> Taylor.
> Also
>  [mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm] = [mm]f(x_1,x_2)[/mm] +
>  [mm]\varepsilon_1 f_{x_1}(x_1,x_2)[/mm] + [mm]\varepsilon_2 f_{x_2}(x_1,x_2)[/mm]
>  + ...
> ist so, weil hiermit die Taylorentwicklung bis zur ersten
> Ordnung aufgeschrieben ist. Die Punkte am Ende des letzten
> Additionszeichen würden dann die 2. Ordnung folgen lassen,
> richtig?
>  
> D.h. konkret würde doch gelten aufgrund der Taylorformel:
>  [mm]f(x_1[/mm] + [mm]\varepsilon_1, x_2[/mm] + [mm]\varepsilon_2)[/mm] = [mm]f(x_1,x_2)[/mm]
> *1 * 1 +  [mm]1 * \varepsilon_1 f_{x_1}(x_1,x_2)[/mm] + [mm]1 * \varepsilon_2 f_{x_2}(x_1,x_2)[/mm]
>  + ...
>
> oder (was ja genau dem o.g. entspricht)?
>  Wenn ich die "..." mal fortsetze, würde dann
>  
> + [mm]\bruch{1}{2}* \varepsilon_1^2 f_{x_1 x_1}(x_1,x_2)[/mm] +
> [mm]\bruch{1}{2} * \varepsilon_2^2 f_{x_2 x_2}(x_1,x_2)[/mm]  +
> [mm]2\varepsilon_1 \varepsilon_2[/mm] * [mm]\bruch{1}{2} f_{x_1 x_2}[/mm] +
> ...
>  
> folgen, richtig?

>


Ja.

  

> Danke,
>  Anna


Gruss
MathePower

Bezug
                        
Bezug
Taylorentwicklung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Fr 18.01.2013
Autor: Anna-Lyse

Hallo MathePower,

vielen Dank.

Gruß
Anna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]