www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTaylorischer Satz, Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Taylorischer Satz, Ableitung
Taylorischer Satz, Ableitung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorischer Satz, Ableitung: Musterlösung verstehen
Status: (Frage) beantwortet Status 
Datum: 11:32 So 25.01.2009
Autor: Zyklowa

Aufgabe
Eigentlich eine Aufgabe in der Numerik (was ihr nicht können müsst), denn sie wird mit Methoden aus der Analysis gelöst:

Ein explizites Einschrittverfahren habe die Form:

[mm] $y_{i+1} [/mm] := [mm] y_i [/mm] + [mm] h_i f(t_i [/mm] + 0.5 [mm] h_i, y_i [/mm] + 0.5 [mm] h_i f(t_i,y_i)) [/mm] $

Welche Ordnung hat das Verfahren

Hallo.
Hier die Musterlösung, die ich nicht ganz verstehe (Fragen deutlich hervorgehoben)

Verwendung des Lemmas

$G [mm] \subset \IR^2$ [/mm] offen, $f [mm] \in C^{m+1} [/mm] (G) $, $u [mm] \ge [/mm] 0$, $h = [mm] \vektor{h_1 \\ h_2} \in \IR^2$ [/mm]

[mm] D_i [/mm] entspricht der Differentiation nach der i-ten Variablen [mm] x_0, $x_0 [/mm] + h$ mitsamt der Verbindungsstrecke in G, dann gibt es ein [mm] \theta [/mm] zwsichen (0,1) mit

[mm] $f(x_0 [/mm] + h) = [mm] \sum^n_{\theta = 0} \frac{1}{\theta !} (h_1 D_1 [/mm] + [mm] h_2 D_2)^\theta f(x_0) [/mm] + [mm] \frac{1}{(\theta + 1)! } (h_1 D_1 [/mm] + [mm] h_2 D_2)^{n+1} f(x_0 [/mm] + [mm] \theta [/mm] h) $

(mit n=2)
$= [mm] f(x_0) [/mm] + [mm] h_1 f_{x_1} [/mm] + [mm] h_2 f_{x_2} [/mm] + [mm] \frac{1}{2}(h_1^2 f_{x_1 x_1} [/mm] + [mm] 2h_1 h_2 f_{x_1 x_2} [/mm] + [mm] h_2^2 f_{x_2 x_2}) [/mm] + [mm] O(h^3) [/mm] $

wobei jeweils das Argument [mm] x_0 [/mm] weggelassen wird.



Frage
Fehlt da nicht etwas? das [mm] f(x_0) [/mm] und [mm] f_(x_0 [/mm] + [mm] \theta [/mm] h) verschwindet, warum?



Also [mm] $f(t+\frac{h}{2},v(t) [/mm] + [mm] \frac{h}{2}f(t,v(t)) [/mm] $

$= f + [mm] \frac{h}{2} f_t [/mm] + [mm] \frac{h}{2} f*f_u [/mm] + [mm] \frac{1}{2}(\frac{h^2}{4} f_{t t} [/mm] + 2 [mm] \frac{h^2}{4} f_{t u} [/mm] + [mm] \frac{h^2}{4}f^2 f_{u u})+ O(h^3) [/mm] $



Frage
Warum kommt, wenn man nach u ableitet, immer ein f dazu? Also es steht ja dort, [mm] $f*f_u [/mm] $statt [mm] f_u. [/mm] Bei [mm] f_{t u} [/mm] wird ja beim zweiten Mal auch nach u abgeleitet, dort heißt es dann aber nicht $ [mm] h^2/4 [/mm] * f * [mm] f_{t u}$ [/mm]
Das kann ich irgendwie nicht nachvollziehen.



Nach Taylor ist

$ [v(t+h) - v(t)] = v'(t) + 0.5 h v''(t) + [mm] h^2/3 [/mm] * v'''(t) + [mm] O(h^3) [/mm] $

Wegen v '(t) = f(t,v(t)) folgt mit der Kettenregel

$v''(t) = [mm] \frac{d}{dt} [/mm] f(t,v(t)) = [mm] f_t [/mm] + [mm] f_u *\dot{v} [/mm]  = [mm] f_t [/mm] + [mm] f_u [/mm] *f$



Frage
Hier kapiere ich überhaupt nichts mehr, wie kommt man auf die Ableitung
Auch bei der nächsten Ableitung verstehe ich nicht, wo was her kommt



$v'''(t) = [mm] \frac{d}{dt} [/mm] v''(t) = [mm] \frac{d}{dt} (f_t [/mm] + [mm] f_u [/mm] f) $

$= [mm] f_{t t} [/mm] + [mm] f_{t u} [/mm] *f + [mm] (f_{u t} [/mm] + [mm] f_{u u}*f)*f [/mm] + [mm] f_u (f_t [/mm] + [mm] f_u [/mm] f) $

$= [mm] f_{t t} [/mm] + [mm] 2f_{t u}f [/mm] + [mm] f_{u u} f^2 [/mm] + [mm] f_u (f_t [/mm] + [mm] f_u [/mm] f) $




Die letzte Umforumung kann ich natürlich nachvollziehen, Problem sind die Ableitungen.

Freue mich über jegliche Hilfe, danke im Voraus!

Zyklowa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Taylorischer Satz, Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Di 27.01.2009
Autor: MathePower

Hallo Zyklowa,


[willkommenmr]


> Eigentlich eine Aufgabe in der Numerik (was ihr nicht
> können müsst), denn sie wird mit Methoden aus der Analysis
> gelöst:
>  
> Ein explizites Einschrittverfahren habe die Form:
>  
> [mm]y_{i+1} := y_i + h_i f(t_i + 0.5 h_i, y_i + 0.5 h_i f(t_i,y_i))[/mm]
>  
> Welche Ordnung hat das Verfahren
>  Hallo.
>  Hier die Musterlösung, die ich nicht ganz verstehe (Fragen
> deutlich hervorgehoben)
>  
> Wir verwenden den Taylorschen Satz für reellwertige
> Funktionen mehrer Veränderlicher:
>  
> [mm]G \subset \IR^2[/mm] offen, [mm]f \in C^{m+1} (G) [/mm], [mm]u \ge 0[/mm], [mm]h = \vektor{h_1 \\ h_2} \in \IR^2[/mm]
>  
> [mm]D_i[/mm] entspricht der Differentiation nach der i-ten Variablen
> [mm]x_0,[/mm]  [mm]x_0 + h[/mm] mitsamt der Verbindungsstrecke in G, dann
> gibt es ein [mm]\theta[/mm] zwsichen (0,1) mit
>  
> [mm]f(x_0 + h) = \sum^n_{\theta = 0} \frac{1}{\theta !} (h_1 D_1 + h_2 D_2)^\theta f(x_0) + \frac{1}{(\theta + 1)! } (h_1 D_1 + h_2 D_2)^{n+1} f(x_0 + \theta h)[/mm]
>  
> (mit n=2)
>  [mm]= f(x_0) + h_1 f_{x_1} + h_2 f_{x_2} + \frac{1}{2}(h_1^2 f_{x_1 x_1} + 2h_1 h_2 f_{x_1 x_2} + h_2^2 f_{x_2 x_2}) + O(h^3)[/mm]
>  
> wobei jeweils das Argument [mm]x_0[/mm] weggelassen wird.
>  
>
> Frage
>  Fehlt da nicht etwas? das [mm]f(x_0)[/mm] und [mm]f_(x_0[/mm] + [mm]\theta[/mm] h)
> verschwindet, warum?


Es ist

[mm](h_1 D_1 + h_2 D_2)^{3} f(x_0 + \theta h)[/mm]

[mm]=\left( h_{1}^{3} D_{1}^{3}+3h_{1}^{2}h_{2} D_{1}^{2} D_{2}+3h_{1}h_{2}^{2}D_{1}D_{2}^{2}+h_{2}^{3}D_{2}^{3}\right)f(x_0 + \theta h) \in \operatorname{O}\left(h^{3}\right)[/mm]


>  
>
> Also [mm]f(t+\frac{h}{2},v(t) + \frac{h}{2}f(t,v(t))[/mm]
>  
> [mm]= f + \frac{h}{2} f_t + \frac{h}{2} f*f_u + \frac{1}{2}(\frac{h^2}{4} f_{t t} + 2 \frac{h^2}{4} f_{t u} + \frac{h^2}{4}f^2 f_{u u})+ O(h^3)[/mm]
>  
>
> Frage
>  Warum kommt, wenn man nach u ableitet, immer ein f dazu?
> Also es steht ja dort, [mm]f*f_u [/mm]statt [mm]f_u.[/mm] Bei [mm]f_{t u}[/mm] wird ja
> beim zweiten Mal auch nach u abgeleitet, dort heißt es dann
> aber nicht [mm]h^2/4 * f * f_{t u}[/mm]
> Das kann ich irgendwie nicht nachvollziehen.


Nach der Kettenregel gilt:

[mm]\bruch{ \ df\left(t,u\left(t\right)\right) \ }{dt}=\bruch{\partial f}{\partial t}+\bruch{\partial f}{\partial u}\bruch{du}{dt}=f_{t}+f_{u}*u_{t}=f_{t}+f_{u}*f[/mm]

Dies nochmal mit der Kettenregel abgeleitet:

[mm]\bruch{d}{dt}\left( \ f_{t}+f_{u}*u_{t} \ \right)=\bruch{\partial}{\partial t}\left( \ f_{t}+f_{u}*u_{t} \ \right)+\bruch{\partial}{\partial u}\left( \ f_{t}+f_{u}*u_{t} \ \right) *u_t=[/mm]

[mm]=f_{tt}+f_{ut}*u_{t}+f_{u}*u_{tt}+\left( \ f_{tu} + f_{uu} u_{t} \ \right) u_{t}[/mm]

[mm]=f_{tt}+2*f_{tu}*u_{t}+f_{uu}*u_{t}^{2}+f_{u}*u_{tt}[/mm]

[mm]=f_{tt}+2*f_{tu}*f+f_{uu}*f^{2}+f_{u}*u_{tt}[/mm]

mit

[mm]u_{tt}=\bruch{d}{dt}u_{t}=\bruch{d}{dt}f\left(t,u\left(t\right)\right)=\bruch{\partial f}{\partial t}+\bruch{\partial f}{\partial u}\bruch{du}{dt}[/mm]

[mm]=f_{t}+f_{u}*u_{t}=f_{t}+f_{u}*f[/mm]

Weshalb in der Formel der Term [mm]f_{u}*u_{tt}[/mm] nicht erscheint,
kann ich mir nicht erklären.



>  
>
> Nach Taylor ist
>  
> [mm][v(t+h) - v(t)] = v'(t) + 0.5 h v''(t) + h^2/3 * v'''(t) + O(h^3)[/mm]
>  
> Wegen v '(t) = f(t,v(t)) folgt mit der Kettenregel
>  
> [mm]v''(t) = \frac{d}{dt} f(t,v(t)) = f_t + f_u *\dot{v} = f_t + f_u *f[/mm]
>  
>
> Frage
>  Hier kapiere ich überhaupt nichts mehr, wie kommt man auf
> die Ableitung


Der Beweis dieser Kettenregel erfolgt durch
zweimalige Anwendung des Mittelwertsatzes.


>  Auch bei der nächsten Ableitung verstehe ich nicht, wo was
> her kommt
>  
>
> [mm]v'''(t) = \frac{d}{dt} v''(t) = \frac{d}{dt} (f_t + f_u f)[/mm]
>  
> [mm]= f_{t t} + f_{t u} *f + (f_{u t} + f_{u u}*f)*f + f_u (f_t + f_u f)[/mm]
>  
> [mm]= f_{t t} + 2f_{t u}f + f_{u u} f^2 + f_u (f_t + f_u f)[/mm]
>  
>


Hier wurde die Kettenregel nochmal angewandt:

[mm]\frac{d}{dt} (f_t + f_u f)=\bruch{\partial}{\partial t}\left( \ f_t + f_u f \ \right) + \bruch{\partial}{\partial u}\left( \ f_t + f_u f \ \right) *\bruch{du}{dt}[/mm]

[mm]=\bruch{\partial}{\partial t}\left( \ f_t + f_u f \ \right) + \bruch{\partial}{\partial u}\left( \ f_t + f_u f \ \right) *f[/mm]


>
> Die letzte Umforumung kann ich natürlich nachvollziehen,
> Problem sind die Ableitungen.
>  
> Freue mich über jegliche Hilfe, danke im Voraus!
>  
> Zyklowa
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruß
MathePower

Bezug
                
Bezug
Taylorischer Satz, Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Sa 31.01.2009
Autor: Zyklowa

Hallo MathePower

Vielen Dank für deine Antwort, leider habe ich sie erst jetzt gelesen, aber du hast einen sehr guten Job gemacht. Danke.

Beim ersten Lesen habe ich noch keine Fragen und lass das jetzt so erst einmal sacken, bevor ich mich noch mal intensiv mit diesen Formeln auseinander setze.

Also noch mal vielen Dank

Grüße,
Zyklowa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]