Taylorpolynom < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:22 Di 02.12.2014 | Autor: | fuoor |
Aufgabe | Wir wollen mit Hilfe des Taylorpolynoms den Wert einer Funktion in einem Punkt approximativ (und ohne elektronische Hilfsmittel) bestimmen.
(i) Berechnen Sie einen Näherungswert von [mm] e^{0.1}*cos(0.2).
[/mm]
(Stellen Sie dazu eine Funktion f(x,y) auf. Finden Sie einen Entwicklungspunkt [mm] (x_{0}, y_{0}), [/mm] für den Sie [mm] f(x_{0}, y_{0}) [/mm] leicht bestimmen können und bestimmen Sie schließlich mit Hilfe des Taylorpolynoms T von f den gesuchten Näherungswert T(0.1,0.2).
(ii) Vergleichen Sie Ihre Näherung mit dem tatsächlichen Wert (mittels eines Taschenrechners). Warum liefert das Taylorpolynom nicht den exakten Wert? |
Zu (i)
Für mich ist im Moment eine auf der Hand liegende Wahl der Funktion [mm] f(x,y)=e^{x}*cos(y). [/mm] Wäre das okay?
Nun soll ich den Entwicklungspunkt wählen mit dem ich [mm] f(x_{0}, y_{0}) [/mm] leicht bestimmen kann. Leicht bestimmen kann ich zB [mm] e^{0} [/mm] sowie cos(0). Aber kann ich das als Entwicklungspunkt wählen? Ich lande doch recht weit neben dem Ausgangspunkt ... ???!?!?
Vielen Dank für den Support!
|
|
|
|
> Wir wollen mit Hilfe des Taylorpolynoms den Wert einer
> Funktion in einem Punkt approximativ (und ohne
> elektronische Hilfsmittel) bestimmen.
>
> (i) Berechnen Sie einen Näherungswert von
> [mm]e^{0.1}*cos(0.2).[/mm]
>
> (Stellen Sie dazu eine Funktion f(x,y) auf. Finden Sie
> einen Entwicklungspunkt [mm](x_{0}, y_{0}),[/mm] für den Sie
> [mm]f(x_{0}, y_{0})[/mm] leicht bestimmen können und bestimmen Sie
> schließlich mit Hilfe des Taylorpolynoms T von f den
> gesuchten Näherungswert T(0.1,0.2).
>
> (ii) Vergleichen Sie Ihre Näherung mit dem tatsächlichen
> Wert (mittels eines Taschenrechners). Warum liefert das
> Taylorpolynom nicht den exakten Wert?
> Zu (i)
>
> Für mich ist im Moment eine auf der Hand liegende Wahl der
> Funktion [mm]f(x,y)=e^{x}*cos(y).[/mm] Wäre das okay?
>
> Nun soll ich den Entwicklungspunkt wählen mit dem ich
> [mm]f(x_{0}, y_{0})[/mm] leicht bestimmen kann. Leicht bestimmen
> kann ich zB [mm]e^{0}[/mm] sowie cos(0). Aber kann ich das als
> Entwicklungspunkt wählen? Ich lande doch recht weit neben
> dem Ausgangspunkt ... ???!?!?
>
>
> Vielen Dank für den Support!
Guten Abend fuoor
Ich kann wirklich nicht verstehen, weshalb hier ein
Taylorpolynom für eine Funktion f(x,y) mit 2 Variablen
bemüht werden soll, wenn es doch offensichtlich ebenso
(und vermutlich einfacher !) mit 2 separaten Taylorpolynomen
mit je einer Variablen geht.
Ich kann das nur als Schrulle oder leise Böswilligkeit
des Aufgabenstellers interpretieren !
Als Entwicklungspunkt für die e-Funktion sehe ich nichts
besseres als x=0 . Für die Cosinusfunktion könnte man
allenfalls vom Winkel 12° = 72°-60° ausgehen
( 12° = 0.2094 ...) , dessen Cosinuswert man durch Wurzeln
ausdrücken kann:
cos ( [mm] \pi [/mm] /15) = 1/8 (-1+sqrt(5)+sqrt(6 (5+sqrt(5))))
Das wird aber dann doch etwas umständlich. Ohne Taschen-
rechner sind die meisten von uns ja schon mit Quadratwurzeln
überfordert ...
LG , Al-Chwarizmi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:04 Di 02.12.2014 | Autor: | fuoor |
Hallo Al-Chwarizmi,
ich vermute mal deine Unterstellung trifft recht gut. Ich hatte zwischendurch mal angefangen das Taylorpolynom im Entwicklungspunkt (0.1,0.2) zu berechnen. Sieht komplett unerotisch aus. Für y habe ich auch an einen Winkel gedacht ... meine Überlegung ging da in Richtung [mm] \bruch{\pi}{18} [/mm] ... ist aber auch ätzend. Theoretisch sind die Werte ja beide relativ nah an der 1. Das errechnete Taylorpolynom schiesst natürlich aber auch mit (0,0) ordentlich am (elektronisch) berechneten Ergebnis vorbei.
Mit zwei separat berechneten Taylorpolynomen meinst du z.B. [mm] e^{x}*cos(0.2) [/mm] und [mm] e^{0.1}*cos(y), [/mm] oder?
Viele Grüße!
|
|
|
|
|
> Hallo Al-Chwarizmi,
>
> ich vermute mal deine Unterstellung trifft recht gut. Ich
> hatte zwischendurch mal angefangen das Taylorpolynom im
> Entwicklungspunkt (0.1,0.2) zu berechnen. Sieht komplett
> unerotisch aus.
Naja, Erotik würde ich da auch nicht unbedingt erwarten ...
> Für y habe ich auch an einen Winkel
> gedacht ... meine Überlegung ging da in Richtung
> [mm]\bruch{\pi}{18}[/mm] ... ist aber auch ätzend. Theoretisch sind
> die Werte ja beide relativ nah an der 1. Das errechnete
> Taylorpolynom schiesst natürlich aber auch mit (0,0)
> ordentlich am (elektronisch) berechneten Ergebnis vorbei.
>
> Mit zwei separat berechneten Taylorpolynomen meinst du z.B.
> [mm]e^{x}*cos(0.2)[/mm] und [mm]e^{0.1}*cos(y),[/mm] oder?
Ich meine:
$\ [mm] e^{0.1}\ [/mm] =\ [mm] 1+0.1+\frac{0.01}{2}+\frac{0.001}{6}+ [/mm] .....\ [mm] \approx\ [/mm] 1.105....$
und
$\ cos(x)\ =\ [mm] 1-\frac{x^2}{2!}+\frac{x^4}{4!}\ [/mm] -\ ..... $
Das ergibt $\ cos(0.2)\ [mm] \approx\ [/mm] 0.9806$
LG , Al-Chw.
|
|
|
|
|
Hallo!
Zunächst sehe ich es genauso wie du und Al-Chwarizmi. Als Entwicklungspunkt kannst du sicher (0|0) benutzen. Den anderen Kommentar verstehe ich allerdings nicht. Ob man jeden Faktor als einzelne Reihe entwickelt, oder gleich sagt, daß man hier eine 2D-Taylorentwicklung machen will, ist vom Aufwand her doch gleich. Vielleicht ist diese Aufgabe auch nur als Fingerübung gedacht, bevor man zu Funktionen übergeht, wo es wirklich notwendig wird?
Wie auch immer: Bis zu welchem Grad hast du denn entwickelt, und wie nahe bist du an den wahren Wert herangekommen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:47 Di 02.12.2014 | Autor: | fuoor |
Ich bin nur bis zum Taylorpolynom vom Grad 2 gegangen. Der Wert war dann 0,865 statt 1,083.
|
|
|
|