www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorpolynom 5. Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylorpolynom 5. Grades
Taylorpolynom 5. Grades < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom 5. Grades: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 12:47 So 13.09.2009
Autor: Reen1205

Aufgabe
Es sei [mm] f(x) = x*e^{- x^2=}[/mm] . Dann ist das Taylor-Polynom vom Grad 5 von f um 0 gegeben
durch T5(x, 0) = ???

Ich verstehe nicht wie ich hierbei weiterkommen soll. Ich schreibe mal kurz auf wie weit ich bin. Um das Taylorpolynom 5.ten Grades zu entwickeln brauch ich zumindest mal die ersten 5 Ableitungen, die da wären:

[mm] f'(x) = -2x*e^{-x^2}; f''(x)= 4x*e^{-x^2}; f'''(x)= -8x*e^{-x^2}; f^{(4)}(x)= 16x*e^{-x^2}; f^{(5)}(x)= -32x*e^{-x^2} [/mm]

Also bilden sich doch die Koeffizienten nach dem Bildungsgesetz [mm] \summe_{n=0}^{\infty} \bruch{(-2)^n*x}{e^{x^2}} [/mm]

und da hörts bei mir auf. Was fange ich jetzt damit an. Wenn ich die Berechnungen und Herleitungen bishierhin überhaupt richtig gemacht habe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorpolynom 5. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 So 13.09.2009
Autor: schachuzipus

Hallo Rene,

> Es sei [mm]f(x) = x*e^{- x^2=}[/mm] . Dann ist das Taylor-Polynom
> vom Grad 5 von f um 0 gegeben
>  durch T5(x, 0) = ???
>  Ich verstehe nicht wie ich hierbei weiterkommen soll. Ich
> schreibe mal kurz auf wie weit ich bin. Um das
> Taylorpolynom 5.ten Grades zu entwickeln brauch ich
> zumindest mal die ersten 5 Ableitungen, [ok] die da wären:
>  
> [mm]f'(x) = -2x*e^{-x^2};[/mm][notok]

Du musst schon nach Produkt- und Kettenregel ableiten:

[mm] $f'(x)=1\cdot{}e^{-x^2}+x\cdot{}(-2x)\cdot{}e^{-x^2}=(1-2x^2)\cdot{}e^{-x^2}$ [/mm]


> [mm] f''(x)= 4x*e^{-x^2}; f'''(x)= -8x*e^{-x^2}; f^{(4)}(x)= 16x*e^{-x^2}; f^{(5)}(x)= -32x*e^{-x^2}[/mm]
>  
> Also bilden sich doch die Koeffizienten nach dem
> Bildungsgesetz [mm]\summe_{n=0}^{\infty} \bruch{(-2)^n*x}{e^{x^2}} [/mm]

[haee], die Formel ist doch [mm] $T_5(x,0)=\sum\limits_{n=0}^5\frac{f^{(n)}(0)}{n!}\cdot{}x^n$ [/mm]

Du musst also die Ableitungen nochmal nachrechnen und jeweils an der Stelle $x=0$ auswerten, das gibt dir jeweils den Zähler in der obigen Formel ...

>  
> und da hörts bei mir auf. Was fange ich jetzt damit an.
> Wenn ich die Berechnungen und Herleitungen bishierhin
> überhaupt richtig gemacht habe.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß

schachuzipus

Bezug
                
Bezug
Taylorpolynom 5. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 So 13.09.2009
Autor: Reen1205

[mm] f'(x) = e^{-x^2} (1-2x^2) f''(x) = e^{-x^2}(4x^3-6x) f'''(x) = e^{-x^2} (-8x^4+24x^2-6) f^{(4)} = e^{-x^2}(16x^5+80x^3+60x) f^{(5)} = e^{-x^2} (-32x^6+240x^4-360x^2+60)[/mm]

so damit ergibt sich für die Taylor Formel 5.ten Grades jenes hier:
[mm] $ T_5(x,0)=\sum\limits_{n=0}^5\frac{f^{(n)}(0)}{n!}\cdot{}x^n $ = 0*x^0+\bruch{x^1}{1} + 0 + \bruch{-6x^3}{6} + 0 + \bruch {60x^5}{120} [/mm]

Und das wäre dann das einzutragende Ergebnis?

Wie würd ich denn auf die allgemeine Form, also $ [mm] T_n(x,0)=\sum\limits_{n=0}^\infty\frac{f^{(n)}(0)}{n!}\cdot{}x^n [/mm] $ kommen, wahrscheinlich wird es irgendwas mit
[mm] $ T_n(x,0)=\sum\limits_{n=0}^\infty\bruch{x^{2n}}{n!}*(-1)^n $ [/mm]  sein?

Also wenn ich das jetzt richtig hab, dann raste ich vollkommen aus. Dann ist Mathe ja gar nicht so schwer wie immer alle sagen ;)


Bezug
                        
Bezug
Taylorpolynom 5. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 So 13.09.2009
Autor: Reen1205


> [mm] $ T_n(x,0)=\sum\limits_{n=0}^\infty\bruch{x^{2n}}{n!}*(-1)^n $[/mm]
>  sein?

stop, aber irgendwo fehlt mir da noch ein x oder?!


Bezug
                        
Bezug
Taylorpolynom 5. Grades: kleinere Fehler
Status: (Antwort) fertig Status 
Datum: 14:36 So 13.09.2009
Autor: Loddar

Hallo Reen!


> [mm]f'(x) = e^{-x^2} (1-2x^2) f''(x) = e^{-x^2}(4x^3-6x) f'''(x) = e^{-x^2} (-8x^4+24x^2-6) f^{(4)} = e^{-x^2}(16x^5+80x^3+60x) f^{(5)} = e^{-x^2} (-32x^6+240x^4-360x^2+60)[/mm]

Bei der 4. Ableitung hat sich ein vorzeichenfehler eingeschlichen, so dass die 5. Ableitung auch nicht stimmt.

Nichtsdestotrotz ändert das nichts an Deinem Ergebnis für das Taylorplynom.


> so damit ergibt sich für die Taylor Formel 5.ten Grades jenes hier:
> [mm]$ T_5(x,0)=\sum\limits_{n=0}^5\frac{f^{(n)}(0)}{n!}\cdot{}x^n $ = 0*x^0+\bruch{x^1}{1} + 0 + \bruch{-6x^3}{6} + 0 + \bruch {60x^5}{120}[/mm]

[ok] Kannn man nun noch etwas zusammenfassen ...


> Und das wäre dann das einzutragende Ergebnis?

[ok]

  

> Wie würd ich denn auf die allgemeine Form, also
> [mm]T_n(x,0)=\sum\limits_{n=0}^\infty\frac{f^{(n)}(0)}{n!}\cdot{}x^n[/mm]
> kommen, wahrscheinlich wird es irgendwas mit
> [mm] $ T_n(x,0)=\sum\limits_{n=0}^\infty\bruch{x^{2n}}{n!}*(-1)^n $[/mm]
>  sein?

Danach ist doch gar nicht gefragt. Und es muss auch nicht zwangsläufig eine entsprechende allgemeine Darstellung geben.


Gruß
Loddar


Bezug
                                
Bezug
Taylorpolynom 5. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 So 13.09.2009
Autor: Reen1205

Jetzt ist außerdem nach dem Konvergenzradius gefragt. Dafür benötige ich dann doch die allgemeine Form oder nicht?

Bezug
                                        
Bezug
Taylorpolynom 5. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 So 13.09.2009
Autor: schachuzipus

Hallo nochmal,

> Jetzt ist außerdem nach dem Konvergenzradius gefragt.
> Dafür benötige ich dann doch die allgemeine Form oder
> nicht?

Ja, dazu benötigst du die Taylorreihe.

Überlege dir, wie denn die n-te Ableitung an der Stelle 0 allg. aussieht (Beweis dann durch vollst. Induktion)

Alternativ mache dir die (bereits bekannte ?) Reihendarstellung von [mm] $e^z$ [/mm] zunutze:

[mm] $e^z=\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}z^n$ [/mm] für alle z

Also [mm] $e^{-x^2}=\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}(-x^2)^n=\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\cdot{}x^{2n}$ [/mm]

Damit dann [mm] $f(x)=x\cdot{}e^{-x^2}=x\cdot{}\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\cdot{}x^{2n}=...$ [/mm]


Wenn die Reihe dann steht, kannst du ihren Konvergenzradius berechnen ...

LG

schachuzipus




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]