www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorpolynom, Abweichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Taylorpolynom, Abweichung
Taylorpolynom, Abweichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom, Abweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 So 15.06.2008
Autor: DerAntiPro

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[mm] T_{n}(x) [/mm] bezeichne das Taylorpolynom vom Grade n der Funktion f mit dem Entwicklungspunkt [mm] x_{0}=0 [/mm]

a) Bestimmen Sie die maximale Abweichung beim Approximieren von f(x) := [mm] e^{x} [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 durch [mm] T_{7} [/mm] ?
b) Für welche x [mm] \in \IR [/mm] ist der Fehler beim Approximieren von cos x durch [mm] T_{2} [/mm] kleiner also [mm] 10^{-4}? [/mm]

Also ich habe beide Aufgabenteile abgetippt, mich interessiert aber zuerst nur der a) -Teil. Wenn mir dabei jemand hilft, bekomm ich den b) -Teil vielleicht selbst raus, wenn nicht, meld ich mich nochmal :-)

Meine Idee zum a) -Teil ist diese:
[mm] T_{7} [/mm] ist nach Definition [mm] \summe_{k=0}^{7}(\bruch{f^{(k)}(0)}{k!}*x^{k}). [/mm] Es gilt [mm] f^{(n)}(x) [/mm] = f(x), für f(x) = [mm] e^{x} [/mm] und [mm] e^{0}=1, [/mm] also kann ich [mm] T_{7} [/mm] vereinfachen, indem ich 1 einsetze und übrig bleibt [mm] T_{7}=\summe_{k=0}^{7}(\bruch{x^{k}}{k!}). [/mm]

So für [mm] e^{x} [/mm] haben wir die Definition [mm] \limes_{n\rightarrow\infty} \summe_{k=0}^{n}(\bruch{x^{k}}{k!}) [/mm] kennengelernt und wenn ich jetzt also [mm] T_{7} [/mm] von [mm] e^{x} [/mm] abziehe, um die Abweichung zu bestimmen, bleibt [mm] \limes_{n\rightarrow\infty} \summe_{k=8}^{n}(\bruch{x^{k}}{k!}) [/mm] übrig.
Mein Problem ist nur, ich kann damit wenig anfangen. Wie bestimme ich den Grenzwert? Und wie benutze ich die Information. dass 0 [mm] \le [/mm] x [mm] \le [/mm] 1?
Und ist mein Ansatz überhaupt richtig und sinnvoll?

        
Bezug
Taylorpolynom, Abweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 So 15.06.2008
Autor: ullim

Hi,

ich denke Du kommst ganz gut weiter, wenn Du die Funktion f(x) als Taylorreihe entwickelst und dann die Darstellung mit Restglied wählst. Dieses Restglied kanst Du dann abschätzten und damit den maximalen Fehler bestimmen.

ulim

Bezug
                
Bezug
Taylorpolynom, Abweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 So 15.06.2008
Autor: DerAntiPro

Also danke erstmal für die Antwort, aber ich fürchte, das bringt mich nicht weiter. Wir haben das Restglied [mm] R_{n}(x) [/mm] als [mm] \bruch{f^{n+1}(x_{n+1})}{(n+1)!}*x^{n+1} [/mm] kennengelernt, bzw. das steht so in meinem Hefter. Nur ich kann nichts damit anfangen. Woher weiss ich, wie mein [mm] x_{n+1} [/mm] aussieht? Wähl ich das beliebig zwischen 0 und x? Aber dann kommen doch immer verschiedene Werte heraus abhängig davon, wie ich [mm] x_{n+1} [/mm] wähle?
Kannst du mir ein Beispiel geben, wie man ein Restglied berechnet?

Bezug
                        
Bezug
Taylorpolynom, Abweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 So 15.06.2008
Autor: ullim

Hi,

allgemein lautet die Taylorformel

[mm] f(x_0+h) [/mm] = [mm] \summe_{k=0}^{n} \bruch{f^{(k)}(x_0)}{k!}h^k [/mm] + [mm] \bruch{f^{(n+1)}(x_0+\theta*h)}{(n+1)!}*h^{n+1} [/mm] mit [mm] 0\le\theta\le1 [/mm]

Auf Deinen Fall angewendet gilt

[mm] f(x)=e^x [/mm] und [mm] f^{(k)}(x)=e^x [/mm]

[mm] x_0=0 [/mm]

h=x mit [mm] 0\le x\le1 [/mm]

Also

[mm] f(x)=\summe_{k=0}^{7} \bruch{x^k}{k!} [/mm] + [mm] \bruch{f^{(8)}(\xi)}{8!}*x^{8} [/mm] mit [mm] 0\le\xi\le{x} [/mm]

Abzuschätzen ist also der Term

[mm] \bruch{f^{(8)}(\xi)}{8!}*x^{8} [/mm] mit [mm] 0\le\xi\le1 [/mm] und [mm] 0\le x\le1 [/mm]

[mm] \bruch{f^{8}(\xi)}{8!}*x^{8}=\bruch{e^{\xi}}{8!}*x^{8}\le\bruch{1}{8!} [/mm]

mfg ulim

Bezug
                                
Bezug
Taylorpolynom, Abweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 17.06.2008
Autor: DerAntiPro

Die letzte Abschätzung verstehe ich nicht.
Du schätzt [mm] \bruch{e^{\xi}}{8!}*x^{8} [/mm] mit [mm] 0\le\xi\le1 [/mm] und [mm] 0\le [/mm] x [mm] \le1 [/mm] ab, aber kommt dann da nicht [mm] \bruch{e^{1}}{8!} [/mm] raus, wenn man das [mm] \xi [/mm] maximal wählt? Oder kann man das [mm] \xi [/mm] wählen wie man will?

Bezug
                                        
Bezug
Taylorpolynom, Abweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Di 17.06.2008
Autor: leduart

Hallo
Du hast recht, es muss [mm] e^1 [/mm] nicht 1 heissen ullim hat sich vertan.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]