www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Teilbarkeit
Teilbarkeit < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Fr 27.04.2012
Autor: Lu-

Aufgabe
n [mm] \in \IN [/mm] habe die Dezimaldarstellung n= [mm] a_0 [/mm] + 10 [mm] a_1 [/mm] + [mm] 10^2 a_2 +..+10^k a_k [/mm] mit [mm] a_0, a_1, a_2 ,...,a_k \in \{0,1,2,..9\} [/mm]
Beweise: Die Zahl n ist genau dann durch 7 teilbar wenn der folgende ausdruck durch 7 teilbar ist:
[mm] (a_0 [/mm] + 10 [mm] a_1 [/mm] + 100 [mm] a_2) [/mm] - [mm] (a_3 [/mm] + 10 [mm] a_4 [/mm] + 100 [mm] a_5) [/mm] + [mm] (a_6 [/mm] + 10 [mm] a_7 [/mm] + 100 [mm] a_8) \pm [/mm] ..

mein nichtsbringender Ansatz:
[mm] 10\equiv3 [/mm] (mod 7)
[mm] 10^i \equiv3^i [/mm] (mod 7)

[mm] n=a_0 [/mm] + 10 [mm] a_1 [/mm] + [mm] 10^2 a_2 +..+10^k a_k \equiv a_0 [/mm] + 3 [mm] a_1 [/mm] + [mm] 3^2 a_2 +..+3^k a_k [/mm] (mod 7)

mhm
n= [mm] \sum_{i=0}^k a_i 10^i [/mm]


        
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Fr 27.04.2012
Autor: korbinian

Hallo,
dann versuchen wir´s doch anders. Überlege, wie sich die gegebene Zahl und die daraus gebildete Zahl unterscheiden und beacht 7|1001.
Gruß korbinian


Bezug
                
Bezug
Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Fr 27.04.2012
Autor: Lu-

n=$ [mm] a_0 [/mm] $ + 10 $ [mm] a_1 [/mm] $ + $ [mm] 10^2 a_2 +..+10^k a_k [/mm] $= $ [mm] \sum_{i=0}^k a_i 10^i [/mm] $

und
$ [mm] (a_0 [/mm] $ + 10 $ [mm] a_1 [/mm] $ + 100 $ [mm] a_2) [/mm] $ - $ [mm] (a_3 [/mm] $ + 10 $ [mm] a_4 [/mm] $ + 100 $ [mm] a_5) [/mm] $ + $ [mm] (a_6 [/mm] $ + 10 $ [mm] a_7 [/mm] $ + 100 $ [mm] a_8) \pm [/mm] $ ..  = [mm] \sum_{i=0}^2 a_i 10^i [/mm] - [mm] \sum_{i=3}^5 a_i 10^{i-3} [/mm] + [mm] \sum_{i=6}^8 a_i 10^{i-6}-... [/mm]

> gegebene Zahl und die daraus gebildete Zahl unterscheiden

Die Zehnerpotenzen gehen nur bis [mm] 10^2 [/mm] und es werden jeweils 3 Summanden abgezogen und 3 dazuaddiert.

Bezug
                        
Bezug
Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Fr 27.04.2012
Autor: Lu-

Ich habe einen Beweis im Internet gefunden:
[mm] 10^3 \equiv [/mm] -1 (7)

[mm] 10^{6n} \equiv [/mm] 1 (7)
[mm] 10^{6n+3} \equiv [/mm] -1 (7)


[mm] 10^{6n+1} \equiv [/mm] 10 (7)
[mm] 10^{6n+2} \equiv [/mm] 100 (7)
[mm] 10^{6n+3} \equiv [/mm] -1 (7)
[mm] 10^{6n+4} \equiv [/mm] -10 (7)
[mm] 10^{6n+5} \equiv [/mm] -100 (7)

Wieso rechnet man hier die hochzahlen in Modulo 6?
Und wieso weiß man das gilt:
[mm] 10^{6n} \equiv [/mm] 1 (7)
[mm] 10^{6n+3} \equiv [/mm] -1  (7)

Bezug
                                
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Fr 27.04.2012
Autor: abakus


> Ich habe einen Beweis im Internet gefunden:
>  [mm]10^3 \equiv[/mm] -1 (7)
>  
> [mm]10^{6n} \equiv[/mm] 1 (7)
>  [mm]10^{6n+3} \equiv[/mm] -1 (7)
>  
>
> [mm]10^{6n+1} \equiv[/mm] 10 (7)
>  [mm]10^{6n+2} \equiv[/mm] 100 (7)
>  [mm]10^{6n+3} \equiv[/mm] -1 (7)
>  [mm]10^{6n+4} \equiv[/mm] -10 (7)
>  [mm]10^{6n+5} \equiv[/mm] -100 (7)
>  
> Wieso rechnet man hier die hochzahlen in Modulo 6?
>  Und wieso weiß man das gilt:
>  [mm]10^{6n} \equiv[/mm] 1 (7)
>  [mm]10^{6n+3} \equiv[/mm] -1  (7)

Hallo,
weil 1001 durch 7 teilbar ist, weiß man
[mm] 1000$\equiv$-1 [/mm] mod 7 bzw. [mm] $10^3\equiv$-1 [/mm] mod 7 .

Wenn man diese Kongruenz mit 2, 3, 4, 5 usw. potenziert, erhält man
[mm] $(10^3)^2\equiv(-1)^2 [/mm] mod 7
[mm] $(10^3)^3\equiv(-1)^3 [/mm] mod 7
usw. Die Zehnerpotenzen mit den Exponenten 3, 6, 9, 12 usw. lassen also abwechselnd den Rest 1 und den Rest -1.
Der Rest 1 tritt bei den geraden und somit auch durch 6 teilbaren Exponenten 6, 12, 18, ... auf.

Gruß Abakus


Bezug
                                        
Bezug
Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Fr 27.04.2012
Autor: Lu-

Danke, das verstehe ich.
Aber ist der Beweis so vollständig?
Weil ich starte ja von einer wahren Aussage aus und verwende nicht 7/n wie in der angabe..

Bezug
                                                
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Fr 27.04.2012
Autor: leduart

Hallo
du hast bisher keinen vollst Beweis aufgeschrieben, nur die nötigen informationen, die man für einen beweis braucht.
gruss leduart

Bezug
                                                        
Bezug
Teilbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:38 Sa 28.04.2012
Autor: Lu-

ok danke, der beweis ist nun klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]