www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesTeilbarkeit durch 3 Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Teilbarkeit durch 3 Beweis
Teilbarkeit durch 3 Beweis < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit durch 3 Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Fr 23.10.2009
Autor: MontBlanc

Aufgabe
Sei n eine ganze zahl. beweisen Sie, dass wenn [mm] n^2 [/mm] durch 3 teilbar ist, ist auch n durch 3 teilbar

Hi,

also ich bin da wie folgt rangegangen: $ [mm] (3n)^2 \Rightarrow [/mm] 3n $ .

Wenn [mm] n^2 [/mm] nicht durch drei teilbar ist, kann ich es schreiben als:

[mm] n^2=(3m+1) [/mm] oder [mm] n^2=(3m+2)^2 [/mm] . Wenn ich jetzt daraus ableiten kann, dass auch n dann nicht durch 3 teilbar ist, hätte ich einen widerspruch und der beweis wäre fertig. Aber wie komme ich zum widerspruch ? Ist die idee überhaupt die richtige ?

Lg,

exeqter

        
Bezug
Teilbarkeit durch 3 Beweis: Kontraposition
Status: (Antwort) fertig Status 
Datum: 23:22 Fr 23.10.2009
Autor: Al-Chwarizmi

Hallo exeqter,


> Sei n eine ganze zahl. beweisen Sie, dass wenn [mm]n^2[/mm] durch 3
> teilbar ist, ist auch n durch 3 teilbar
>  Hi,
>  
> also ich bin da wie folgt rangegangen: [mm](3n)^2 \Rightarrow 3n[/mm]
>  
> Wenn [mm]n^2[/mm] nicht durch drei teilbar ist, kann ich es
> schreiben als:
>  
> [mm]n^2=(3m+1)[/mm]      [ok]

> oder [mm]n^2=(3m+2)^2[/mm]     [verwirrt]

> Wenn ich jetzt daraus
> ableiten kann, dass auch n dann nicht durch 3 teilbar ist,
> hätte ich einen widerspruch und der beweis wäre fertig.
> Aber wie komme ich zum widerspruch ? Ist die idee
> überhaupt die richtige ?


Ich würde dir einen Beweis durch Kontraposition
vorschlagen.
Anstatt zu zeigen:

   [mm] n^2 [/mm] durch 3 teilbar  [mm] $\Rightarrow\qquad$ [/mm]   n durch 3 teilbar

kannst du zeigen:

   n nicht durch 3 teilbar  [mm] $\Rightarrow\qquad$ n^2 [/mm] nicht durch 3 teilbar

Dies ist äquivalent.
Nimm also an, dass n nicht durch 3 teilbar sei,
d.h. entweder n=3k+1 oder n=3k+2  (mit [mm] k\in\IZ) [/mm]
und betrachte die Konsequenzen, die sich für
[mm] n^2 [/mm] ergeben.


LG     Al-Chw.

Bezug
                
Bezug
Teilbarkeit durch 3 Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Fr 23.10.2009
Autor: MontBlanc

Hi,

danke schonmal für deine antwort. Das sähe dann bei mir wie folgt aus :

n=(3k+1)

[mm] n^2=9k^2+6k+1 [/mm]

[mm] n^2=3k*(3k+2)+1 [/mm]

Der erste Summand ist zwar durch 3 teilbar, durch addition von 1 ist der gesamte ausdruck jedoch nicht durch 3 teilbar.

sei n=(3k+2)

[mm] n^2=9k^2+6k+4=9k^2+6k+3+1=3*(3k^2+2k+1)+1 [/mm]

der erste Summand wäre wieder durch drei teilbar, durch addition von 1 ist ers aber nicht, daher ist [mm] n^2 [/mm] nicht durch 3 teilbar wenn n nicht durch drei teilbar ist. q.e.d

Bezug
                        
Bezug
Teilbarkeit durch 3 Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Fr 23.10.2009
Autor: Al-Chwarizmi

... und was war die Frage ?

ob's richtig sei ?

Ja, ist es.


[gutenacht]

Bezug
                                
Bezug
Teilbarkeit durch 3 Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Fr 23.10.2009
Autor: MontBlanc

Super, vielen Dank für deine Hilfe.

Gute Nacht!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]