Teilmenge mit leerem Rand < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:21 So 12.08.2012 | Autor: | sqflo |
Hallo.
Sei [mm] $(\mathbb{Q}, [/mm] d)$ mit $d(x,y)=|x-y|$ ein metrischer Raum. Gesucht ist eine echte, nichtleere, Teilmenge, deren Rand leer ist.
Ich habe mir dazu folgendes überlegt:
Sei [mm] $A:=\{x\in\mathbb{Q};x^2\le 2\}$. [/mm] Dann ist [mm] $\emptyset\neq A\subsetneq\mathbb{Q}$
[/mm]
$(i)$ Sei [mm] $x\in [/mm] A$. Dann ist [mm] $x^2<2$ [/mm] und [mm] $|x|<\sqrt{2}$. [/mm] Weil [mm] $\mathbb{Q}$ [/mm] dicht in [mm] $\mathbb{R}$ [/mm] liegt , existiert ein [mm] $y\in\mathbb{Q}$ [/mm] mit [mm] $|x|<|y|<\sqrt{2}$. [/mm] setze [mm] $\varepsilon=y-x$. [/mm] Dann ist [mm] $U_\mathbb{Q}(x,\varepsilon)\subset [/mm] A$ (hier ist [mm] $U_\mathbb{Q}(x,\varepsilon)$ [/mm] eine offene epsilon-umgebung in [mm] \mathbb{Q} [/mm] bzgl. der oben genannten Metrik.) und x ist kein Randpunkt, da es ein [mm] $\varepsilon>0$ [/mm] gibt, sodass [mm] $U(x,\varepsilon)\cap(\mathbb{Q}\setminus A)=\emptyset$.
[/mm]
$(ii)$ Sei nun [mm] $x'\in\mathbb{Q}\setminus [/mm] A$. Wieder weil [mm] \mathbb{Q} [/mm] dicht in [mm] \mathbb{R} [/mm] liegt, gibt es ein [mm] $y'\in\mathbb{Q}\setminus [/mm] A$ mit [mm] $\sqrt{2}<|y'|<|x'|$. [/mm] Setze [mm] $\varepsilon':= [/mm] x'-y'$. Dann ist [mm] $U_\mathbb{Q}(x',\varepsilon')\subset\mathbb{Q}\setminus [/mm] A$. Und wie oben ist $x'$ deswegen kein Randpunkt.
Weil $x$ und $x'$ beliebig waren, gilt das für alle Elemente $A$ ubnd [mm] $\mathbb{Q}\setminus [/mm] A$ und damit ist der Rand [mm] $\partial A=\emptyset$.
[/mm]
Ist das soweit richtig argumentiert?
lg und danke für eure Hilfe!
flo
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:40 Mo 13.08.2012 | Autor: | fred97 |
> Hallo.
>
> Sei [mm](\mathbb{Q}, d)[/mm] mit [mm]d(x,y)=|x-y|[/mm] ein metrischer Raum.
> Gesucht ist eine echte, nichtleere, Teilmenge, deren Rand
> leer ist.
>
> Ich habe mir dazu folgendes überlegt:
>
> Sei [mm]A:=\{x\in\mathbb{Q};x^2\le 2\}[/mm]. Dann ist [mm]\emptyset\neq A\subsetneq\mathbb{Q}[/mm]
>
> [mm](i)[/mm] Sei [mm]x\in A[/mm]. Dann ist [mm]x^2<2[/mm] und [mm]|x|<\sqrt{2}[/mm]. Weil
> [mm]\mathbb{Q}[/mm] dicht in [mm]\mathbb{R}[/mm] liegt , existiert ein
> [mm]y\in\mathbb{Q}[/mm] mit [mm]|x|<|y|<\sqrt{2}[/mm]. setze [mm]\varepsilon=y-x[/mm].
> Dann ist [mm]U_\mathbb{Q}(x,\varepsilon)\subset A[/mm] (hier ist
> [mm]U_\mathbb{Q}(x,\varepsilon)[/mm] eine offene epsilon-umgebung in
> [mm]\mathbb{Q}[/mm] bzgl. der oben genannten Metrik.) und x ist kein
> Randpunkt, da es ein [mm]\varepsilon>0[/mm] gibt, sodass
> [mm]U(x,\varepsilon)\cap(\mathbb{Q}\setminus A)=\emptyset[/mm].
>
> [mm](ii)[/mm] Sei nun [mm]x'\in\mathbb{Q}\setminus A[/mm]. Wieder weil
> [mm]\mathbb{Q}[/mm] dicht in [mm]\mathbb{R}[/mm] liegt, gibt es ein
> [mm]y'\in\mathbb{Q}\setminus A[/mm] mit [mm]\sqrt{2}<|y'|<|x'|[/mm]. Setze
> [mm]\varepsilon':= x'-y'[/mm]. Dann ist
> [mm]U_\mathbb{Q}(x',\varepsilon')\subset\mathbb{Q}\setminus A[/mm].
> Und wie oben ist [mm]x'[/mm] deswegen kein Randpunkt.
>
> Weil [mm]x[/mm] und [mm]x'[/mm] beliebig waren, gilt das für alle Elemente [mm]A[/mm]
> ubnd [mm]\mathbb{Q}\setminus A[/mm] und damit ist der Rand [mm]\partial A=\emptyset[/mm].
>
>
> Ist das soweit richtig argumentiert?
Ja
FRED
>
> lg und danke für eure Hilfe!
> flo
>
|
|
|
|