www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperTeilmengen und Familien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Teilmengen und Familien
Teilmengen und Familien < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen und Familien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mo 10.12.2007
Autor: hase-hh

Aufgabe
Sei K ein Körper und V ein K-Vektorraum.

i) Die Teilmenge M [mm] \subset [/mm] V sei linear unabhängig. Ist dann auch jede Teilmenge M' [mm] \subset [/mm] M linear unabhängig? Beweis oder Gegenbeispiel!

ii) Beweisen Sie: enthält eine Familie von Vektoren von V eine linear abhängige Unterfamilie, so ist sie selbst linear abhängig.

Moin!

zu i)
hier würde ich sagen, wenn eine Teilmenge des Vektorraums linear unabhängig ist (also aus linear unabhängigen Vektoren besteht), dann muss auch eine Teilmenge der Teilmenge linear unabhängig sein.

Aber wie soll ich / kann ich das beweisen???


zu ii) Was ist eine Familie bzw. eine Unterfamilie?  


Vielen Dank für eure Hilfe!

Gruß
Wolfgang



        
Bezug
Teilmengen und Familien: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Di 11.12.2007
Autor: angela.h.b.


> Sei K ein Körper und V ein K-Vektorraum.
>
> i) Die Teilmenge M [mm]\subset[/mm] V sei linear unabhängig. Ist
> dann auch jede Teilmenge M' [mm]\subset[/mm] M linear unabhängig?
> Beweis oder Gegenbeispiel!
>  
> ii) Beweisen Sie: enthält eine Familie von Vektoren von V
> eine linear abhängige Unterfamilie, so ist sie selbst
> linear abhängig.
>  Moin!
>  
> zu i)
> hier würde ich sagen, wenn eine Teilmenge des Vektorraums
> linear unabhängig ist (also aus linear unabhängigen
> Vektoren besteht), dann muss auch eine Teilmenge der
> Teilmenge linear unabhängig sein.
>  
> Aber wie soll ich / kann ich das beweisen???

Hallo,

der Schlüssel ist hier die Definition der linearen Unabhängigkeit.

Schau nach, wie das definiert ist und beachte, daß Du es hier mit Mengen zu tun hast, die nicht notwendigerweis endlich sind.
Du brauchst also die Def. der linearen Unabhängigkeit, die auch unendliche Mengen v. Vektoren umfaßt.

Statt der Behauptung dürfte es viel einfacher sein, ihre Kontraposition zu beweisen, der Beweis purzelt fast aus der Definition der Unabhängigkeit.

Die Behauptung lautet ja:

M linear unabhängig ==> jede Teilmenge v. M ist linear unabhängig

Kontraposition:

Es gibt eine linear abhängige Teilmenge v. M ==> M ist linear abhängig.

> zu ii) Was ist eine Familie bzw. eine Unterfamilie?  

So etwas ähnliches wie eine Menge.
Da man später mit Basen und Koordinaten arbeitet, ist es jedoch oft sinnig, den Vektoren solcher Mengen eine feste Reihenfolge zu geben.
Du mußt mal schauen, wie Ihr das definiert habt.
Eine Familie v. Vektoren ist ein Tupel von Vektoren (also abzählbar), eine geordnete Menge, eine Unterfamilie eine (geordnete) Teilmenge davon.
Möglicherweise sind bei Euch Familien auch endlich - wäre denkbar.

Für die vorliegende Aufgabe kannst Du Familie = Menge nehmen. Wenn ich es mir recht überlege, ist es dasselbe wie bei i).

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]