www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTeilverhältnis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Teilverhältnis
Teilverhältnis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilverhältnis: Farge
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 16.05.2005
Autor: sternchen19.8

Ich soll in einer Aufgabe zeigen, dass das Teilverhältnis unter einen injektiven affinen Abbildung f: A-->A erhalten bleibt. Dabei ist gesagt, dass p, q, r auf einer Geraden liegende Punkkte sind eines affinen Raumes A, wobei gilt q ungleich p.
DAs Teilverhältnis der Punkte p, q, r lauet  [mm] \overrightarrow{pq} [/mm] =   [mm] \alpha \overrightarrow{pr} \alpha \in [/mm] K. Ich weiß nicht so richtig, wie ich das machen soll, könnt ihr mir vielleicht ein paar Tips oder einen Beweisansatz geben? Danke!!!

        
Bezug
Teilverhältnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Mo 16.05.2005
Autor: sternchen19.8

Ich bins nochmal. Ich weiß, dass das total unpassend ist, ist auch nicht meine Art zu drängeln, aber ic weiß absolut nicht, was ich bei dieser Aufgabe machen soll und muss sie aber allerdings morgen abgeben. Könnt ihr mir nicht vielleicht ein wenig helfen. Wenigsten einen Ansatz? Ich weiß, nicht drängeln!!!

Bezug
        
Bezug
Teilverhältnis: Mit Definitionen arbeiten
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 16.05.2005
Autor: moudi

Hallo Sternchen

Ich würde mit den Definitionen arbeiten, dann ist die Aufgabe "straigth forward".

Wenn f eine affine Abbildung ist, dann gibt es eine Matrix A und einen Punkt (Vektor) [mm] $x_0$ [/mm] so, dass
[mm] $f(x)=x_0+Ax$ [/mm] (wobei [mm] $x\in K^n$). [/mm]

Der Vektor [mm] $\overrightarrow{pq}$ [/mm] ist die Differenz der Ortsvektoren [mm] $\overrightarrow{pq}=q-p$. [/mm]
Und jetzt einfach einsetzen:

[mm] $\overrightarrow{f(p)f(q)}=f(q)-f(p)=x_0+Aq-(x_0+Ap)=Aq-Ap=A(q-p)=A\overrightarrow{pq}$ [/mm]

Daher ist [mm] $\overrightarrow{f(p)f(q)}$ [/mm] nichts anderes, als das Bild von [mm] $\overrightarrow{pq}$ [/mm] unter einer (injektiven) linearen Abbildung. Dann folgt die Behauptung leicht.

mfG Moudi

Bezug
        
Bezug
Teilverhältnis: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 16.05.2005
Autor: sternchen19.8

Heißt das, wenn ich das so hinschreibe habe ich schon die Behauptung bestätigt? Wo bringst du denn direkt die injektivität ein?

Bezug
                
Bezug
Teilverhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mo 16.05.2005
Autor: moudi

Wenn [mm] $q\neq [/mm] p$, dann ist [mm] $\overrightarrow{pq}$ [/mm] nicht der Nullvektor, dann ist wegen Injektivität [mm] $\overrightarrow{f(p)f(q)}$ [/mm] nicht der Nullvektor.

Wenn [mm] $\overrightarrow{pr}=\alpha\overrightarrow{pq}$, [/mm] dann gilt das wegen der Linearität auch für die Bildpunkte.

Wäre [mm] $\overrightarrow{f(p)f(q)}=\vec [/mm] 0$, dann wäre natürlich auch [mm] $\overrightarrow{f(p)f(r)}=\vec [/mm] 0$ und die drei Bildpunkte wären identisch. Man könnte dann nicht mehr von Teilverhältnissen sprechen, deshalb ist die Injetivität notwendig.

mfG Moudi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]